General Relativity
 Problem Set III
 Lie derivative, Connection, Curvature

Due date: 27/04/2018

1. Find out the Lie derivative of a one-form in a coordinate independent way. Verify your result by using the Lie derivative formulas for a function and a vector field.
2. Find out the Lie derivative of a $(0,2)$ type tensor.
3. Show that $\mathcal{L}_{X} i_{X} \omega=i_{X} \mathcal{L}_{X} \omega$ for any r-form ω.
4. Show that connection co-efficient does not transform as a tensor. [Convince yourself that connection coefficients are zero for any flat manifold.]
5. Show that covariant differentiation commutes with contraction.
6. Show that $\left[\nabla_{\mu}, \nabla_{\nu}\right] V^{\rho}=R_{\sigma \mu \nu}^{\rho} V^{\sigma}$
7. Find out the Christoffel connection coefficients of a 2-sphere. Find the Riemann tensor, Ricci tensor components and curvature (Riccci) scalar of 2 -sphere.
8. Deduce the equation of geodesic of a 2 -sphere and find the geodesic curve.
9. Show that $\Gamma_{\mu \nu}^{\mu}=\frac{1}{\sqrt{|g|}} \partial_{\nu}(\sqrt{|g|})$. Where $|g|$ is the modulus of the determinant of the metric tensor.
10. Riemann Normal Coordinates (RNC) denotes a coordinate system where Christoffel symbols vanish but not their derivatives.
Use RNC to prove the Bianchi identity: $\nabla_{[\rho} R_{\mu \nu] \sigma \alpha}=0$.
