General Relativity
 Problem Set II
 Differentiable forms, Push-forward, Pull-back

1. The map $h: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is defined by

$$
h(a, b):=\left(a^{2}-2 b, 4 a^{3} b^{2}\right)
$$

Compute the push-forward of the derivation $h_{*}\left(4 x^{1} \frac{\partial}{\partial x^{1}}+3 x^{2} \frac{\partial}{\partial x^{2}}\right)_{(1,2)}$ at the point $(1,2) \in \mathbb{R}^{2}$, where $\left\{x^{1}, x^{2}\right\}$ are the natural coordinates on \mathbb{R}^{2}.
2. Let $h: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be rotation counterclockwise by an angle θ. Let $\partial_{x}, \partial_{y}$ be the coordinate vector fields on \mathbb{R}^{2}. Show that at any point of \mathbb{R}^{2}

$$
\begin{aligned}
h_{*} \partial_{x} & =\cos \theta \partial_{x}-\sin \theta \partial_{y} \\
h_{*} \partial_{y} & =\sin \theta \partial_{x}+\cos \theta \partial_{y}
\end{aligned}
$$

3. Prove that exterior derivative d and pull-back f^{*} commutes. First show for a function and then for a r-form.
4. Let, $f_{1}=x^{2}-y^{2}$, and $f_{2}=2 x y$. Also, $\omega_{1}=x y d x+x d y, \omega_{2}=-2 y d x+x d y, \omega_{3}=\left(x^{2}+y^{2}\right) d y$. Let, $f: \mathbb{R} \rightarrow \mathbb{R}^{2}$ s.t. $(x, y)=f(t)=\left(t, t^{2}\right)$. Find
(a) $f^{*}\left(f_{1}\right),(\mathrm{b}) f^{*}\left(f_{2}\right),(\mathrm{c}) f^{*}\left(\omega_{1}\right)$, (d) $f^{*}\left(\omega_{2}\right)$, (e) $f^{*}\left(\omega_{3}\right)$.

Show $f^{*}\left(d f_{1(2)}\right)=d f^{*}\left(f_{1(2)}\right)$ and $f^{*}\left(d \omega_{1}\right)=d\left(f^{*} \omega_{1}\right)$.
5. Let $h: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be rotation counterclockwise by an angle θ. Let $d x, d y$ be the usual basis of 1 -forms in \mathbb{R}^{2}. Show that at any point of \mathbb{R}^{2}

$$
\begin{aligned}
h^{*} d x & =\cos \theta d x-\sin \theta d y \\
h^{*} d y & =\sin \theta d x+\cos \theta d y
\end{aligned}
$$

6. Let $f: \mathbb{R} \rightarrow \mathbb{R}^{3}$, and $f(t)=(\sin t, \cos t, t)$. Let, ω is a one-form

$$
\omega(x, y, z)=3\left(x^{2}+y^{2}\right) d x-2 x d y+z^{2} d z
$$

Find out $f^{*} \omega(t)$.

