General Relativity Problem Set II Differentiable forms, Push-forward, Pull-back

1. The map $h: \mathbb{R}^2 \to \mathbb{R}^2$ is defined by

$$h(a,b) := (a^2 - 2b, 4a^3b^2)$$

Compute the push-forward of the derivation $h_*(4x^1\frac{\partial}{\partial x^1} + 3x^2\frac{\partial}{\partial x^2})_{(1,2)}$ at the point $(1,2) \in \mathbb{R}^2$, where $\{x^1, x^2\}$ are the natural coordinates on \mathbb{R}^2 .

2. Let $h : \mathbb{R}^2 \to \mathbb{R}^2$ be rotation counterclockwise by an angle θ . Let ∂_x, ∂_y be the coordinate vector fields on \mathbb{R}^2 . Show that at any point of \mathbb{R}^2

$$h_*\partial_x = \cos\theta\partial_x - \sin\theta\partial_y$$
$$h_*\partial_y = \sin\theta\partial_x + \cos\theta\partial_y$$

- 3. Prove that exterior derivative d and pull-back f^* commutes. First show for a function and then for a r-form.
- 4. Let, $f_1 = x^2 y^2$, and $f_2 = 2xy$. Also, $\omega_1 = xydx + xdy$, $\omega_2 = -2ydx + xdy$, $\omega_3 = (x^2 + y^2)dy$. Let, $f : \mathbb{R} \to \mathbb{R}^2$ s.t. $(x, y) = f(t) = (t, t^2)$. Find (a) $f^*(f_1)$, (b) $f^*(f_2)$, (c) $f^*(\omega_1)$, (d) $f^*(\omega_2)$, (e) $f^*(\omega_3)$. Show $f^*(df_{1(2)}) = df^*(f_{1(2)})$ and $f^*(d\omega_1) = d(f^*\omega_1)$.
- 5. Let $h : \mathbb{R}^2 \to \mathbb{R}^2$ be rotation counterclockwise by an angle θ . Let dx, dy be the usual basis of 1-forms in \mathbb{R}^2 . Show that at any point of \mathbb{R}^2

$$h^* dx = \cos \theta dx - \sin \theta dy$$
$$h^* dy = \sin \theta dx + \cos \theta dy$$

6. Let $f : \mathbb{R} \to \mathbb{R}^3$, and $f(t) = (\sin t, \cos t, t)$. Let, ω is a one-form

$$\omega(x, y, z) = 3(x^2 + y^2)dx - 2xdy + z^2dz.$$

Find out $f^*\omega(t)$.