Discrete Mathematics

Propositional Logic

1. Let p and q be proposition
p : Swimming at the New Jersey shore is allowed.
q : Sharks have been spotted near the shore.
Express the following statements as an English sentence.
a.) $\sim p \leftrightarrow \sim q$
b.) $\sim p{ }^{\vee}\left(p^{\wedge} q\right)$
c.) $\sim p \rightarrow \sim q$
d.) $q \rightarrow p$
2. Let p, q and r be proposition
p : You get an A on the final exam.
q : You do every given assignment.
r: You get an A in Discrete mathematics.
Write these propositions using p, q and r and the logical connectives.
a.) You get an A in Discrete mathematics, but you do not do every given assignment.
b.) You get an A on the final exam, You do every given assignment and You get an A in Discrete mathematics.
c.) You get an A in Discrete mathematics if and only if you either do every given assignment or you get an A in the final exam.
d.) If you do every given assignment, you get A on the final exam if and only if you get an A in discrete mathematics.
e.) To get an A on the final exam, it is necessary for you to get an A in Discrete mathematics.
3. State the converse, contrapositive, and inverse of each of the conditional statements.
a.) When I stay up late, it is necessary that I sleep until noon.
b.) I go to the class whenever there is going to be a quiz.
c.) A positive integer is prime only if it has no divisors other than 1 and itself.
d.) If it snows tonight, then I will stay at home.
4. Construct a Truth Table for each of these compound propositions.
a.) $p \rightarrow \sim q$
b.) $\left(\mathrm{p}^{\wedge} \mathrm{q}^{\wedge} \mathrm{r}\right) \leftrightarrow\left(\mathrm{q}^{\wedge} \mathrm{r}\right)$
c.) $(p \vee \sim q) \wedge(p \vee \sim s)$
d.) $(p \rightarrow q) \leftrightarrow(\sim q \rightarrow \sim p)$
e.) $(p \oplus q) \vee(p \oplus \sim q)$
f.) $(\mathrm{p} \leftrightarrow \mathrm{q}) \oplus(\mathrm{p} \leftrightarrow \sim \mathrm{q})$
g.) $\sim(\sim \mathrm{p} \leftrightarrow \sim \mathrm{q}) \leftrightarrow(\mathrm{p} \leftrightarrow \mathrm{r})$
h.) $\left(p^{\wedge} q\right)^{\wedge} r$
i.) $(p \vee q)^{\wedge} \sim r$
5. Find the dual of each of these compound propositions.
a.) $p \vee \sim q$
b.) $\mathrm{p}^{\wedge} \sim \mathrm{q}^{\wedge} \sim \mathrm{r}$
c.) $(\mathrm{p} \vee \mathbf{F})^{\wedge}(\mathrm{q} \vee \mathbf{T})$
d.) $\left(\mathrm{p}^{\wedge} \mathrm{q}^{\wedge} \mathrm{r}\right) \vee \mathrm{s}$
6. Check if each of these conditional statements is a tautology by using truth tables.
a.) $\left(\mathrm{p}^{\wedge} \mathrm{q}\right) \rightarrow \mathrm{p}$
b.) $\left(\mathrm{p}^{\wedge} \mathrm{q}\right) \rightarrow(\mathrm{p} \rightarrow \mathrm{q})$
c.) $\left(\sim p^{\wedge}(p \vee q)\right) \rightarrow q$
d.) $\left(\sim p^{\wedge}(p \rightarrow q)\right) \rightarrow \sim q$
e.) $(\mathrm{p} \rightarrow \mathrm{q})^{\wedge}(\mathrm{q} \rightarrow \mathrm{r}) \rightarrow(\mathrm{p} \rightarrow \mathrm{r})$
f.) $(\mathrm{p} \vee \mathrm{q})^{\wedge}(\sim \mathrm{p} \vee \mathrm{r}) \rightarrow(\mathrm{q} \vee \mathrm{r})$
7. Show that each of these following statement is a tautology without using truth table.
a.) $\sim(p \rightarrow q) \rightarrow p$
b.) $\left(\mathrm{p}^{\wedge}(\mathrm{p} \rightarrow \mathrm{q})\right) \rightarrow \mathrm{q}$
c.) $\sim p \rightarrow(p \rightarrow q)$
d.) $\sim(\mathrm{p} \rightarrow \mathrm{q}) \rightarrow \sim \mathrm{q}$
8. Check if the following statements are logically equivalent or not.
a.) $p \rightarrow q$ and $\sim q \rightarrow \sim p$
b.) $(\mathrm{p} \rightarrow \mathrm{q})^{\wedge}(\mathrm{p} \rightarrow \mathrm{r})$ and $\mathrm{p} \rightarrow\left(\mathrm{q}^{\wedge} \mathrm{r}\right)$
c.) $p \leftrightarrow q$ and $\sim p \leftrightarrow \sim q$
d.) $\sim p \rightarrow(q \rightarrow r)$ and $q \rightarrow(p \vee r)$
e.) $(\mathrm{p} \rightarrow \mathrm{q}) \rightarrow \mathrm{r}$ and $\mathrm{p} \rightarrow(\mathrm{q} \rightarrow \mathrm{r})$
f.) $\sim(p \oplus q)$ and $p \leftrightarrow q$
9. Check whether following statements are satisfiable or not.
a.) $(\mathrm{p} \rightarrow \mathrm{q})^{\wedge}(\mathrm{q} \rightarrow \mathrm{r}) \rightarrow(\mathrm{p} \rightarrow \mathrm{r})$
b.) $\left(p^{\wedge} q\right) \rightarrow(p \rightarrow q)$
c.) $(\mathrm{p} \vee \mathrm{q})^{\wedge}(\sim \mathrm{p} \vee \mathrm{r}) \rightarrow(\mathrm{q} \vee \mathrm{r})$
d.) $\left(\mathrm{p}^{\wedge}(\mathrm{p} \rightarrow \mathrm{q})\right) \rightarrow \mathrm{q}$
10. Use De Morgan's law to find the negation of these statements.
a.) Mikael has a phone and he has a laptop.
b.) Saumya will go to the concert or Soham will go the concert.
c.) Rahul is not intelligent but hard working.
d.) Carlos will bicycle or run tomorrow.
11. What does the statement $\forall \mathrm{x} N(\mathrm{x})$ means if $\mathrm{N}(\mathrm{x})$ is "Computer x is connected to the network" and the domain consists of all computers on campus?
12. Show that if each of these following are logically equivalent.
a.) $\forall \mathrm{xp}(\mathrm{x}) \vee \forall \mathrm{xq}(\mathrm{x})$ and $\forall \mathrm{x}(\mathrm{p}(\mathrm{x}) \vee \mathrm{q}(\mathrm{x}))$
b.) $\exists \mathrm{xp}(\mathrm{x})^{\wedge} \exists \mathrm{xq}(\mathrm{x})$ and $\exists \mathrm{x}\left(\mathrm{p}(\mathrm{x})^{\wedge} \mathrm{q}(\mathrm{x})\right)$
13. Let $\mathrm{P}(\mathrm{x})$ be the predicate " x must take a discrete mathematics course" and let $\mathrm{Q}(\mathrm{x})$ be the predicate " x is a computer science student". Use quantifiers to express each of these statements:
a.) Every computer science student must take a discrete mathematics course.
b.) Everybody must take a discrete mathematics course or be a computer science student.
14. Express each of these using quantifiers.
a.) All dogs have fleas.
b.) Every bird can fly.
c.) There is no dog that can talk.
d.) No one can keep a secret.
e.) There exists a pig that can swim and catch fish.
f.) Some drivers do not obey the speed limit.
g.) There is someone in this class who does not have a good attitude.
15. Let $S(x)$ be the predicate " \mathbf{x} is a student", $F(x)$ the predicate " \mathbf{x} is a faculty member", and $\mathrm{A}(\mathrm{x}, \mathrm{y})$ the predicate " x has asked y a question," where the domain consist of all people associated with your school. Use quantifiers to express each of these statements.
a.) Every student has asked Professor Srijit a question.
b.) Some students has not asked any faculty member a question.
c.) There is a faculty member who has never been asked a question by a student.
d.) Some student has asked every faculty member a question.
e.) There is a faculty member who has asked every other faculty member a question.
f.) Every faculty member has either asked Professor Mikael a question or been asked a question by Professor Millar.
