Discrete Mathematics Propositional Logic

1. Let p and q be proposition

p: Swimming at the New Jersey shore is allowed.

q: Sharks have been spotted near the shore.

Express the following statements as an English sentence.

a.) $\sim p \leftrightarrow \sim q$

b.) $\sim p \lor (p \land q)$ **c.**) $\sim p \rightarrow \sim q$ **d.**) $q \rightarrow p$

2. Let p, q and r be proposition

p: You get an A on the final exam.

q: You do every given assignment.

r: You get an A in Discrete mathematics.

Write these propositions using p, q and r and the logical connectives.

a.) You get an A in Discrete mathematics, but you do not do every given assignment.

b.) You get an A on the final exam, You do every given assignment and You get an A in Discrete mathematics.

c.) You get an A in Discrete mathematics if and only if you either do every given assignment or you get an A in the final exam.

d.) If you do every given assignment, you get A on the final exam if and only if you get an A in discrete mathematics.

e.) To get an A on the final exam, it is necessary for you to get an A in Discrete mathematics.

3. State the converse, contrapositive, and inverse of each of the conditional statements.

a.) When I stay up late, it is necessary that I sleep until noon.

b.) I go to the class whenever there is going to be a quiz.

c.) A positive integer is prime only if it has no divisors other than 1 and itself.

d.) If it snows tonight, then I will stay at home.

4. Construct a Truth Table for each of these compound propositions.

a.) $p \rightarrow \sim q$

b.)
$$(p \land q \land r) \leftrightarrow (q \land r)$$

c.)
$$(p \lor \sim q) \land (p \lor \sim s)$$
 d.) $(p \to q) \leftrightarrow (\sim q \to \sim p)$

e.)
$$(p \oplus q) \lor (p \oplus \sim q)$$
 f.) $(p \leftrightarrow q) \oplus (p \leftrightarrow \sim q)$

g.) $\sim (\sim p \leftrightarrow \sim q) \leftrightarrow (p \leftrightarrow r)$ **h.**) $(p \land q) \land r$

h.)
$$(p ^ q) ^ r$$

i.) $(p \lor q) \land \sim r$

5. Find the dual of each of these compound propositions.

a.) p ∨ ~q **b.**) p ^ ~q ^ ~r **c.**) (p ∨ F) ^ (q ∨ T) **d.**) (p ^ q ^ r) ∨ s

d.) (p ^ q ^ r)
$$\lor$$
 s

- 6. Check if each of these conditional statements is a tautology by using truth tables.
 - a.) $(p \land q) \rightarrow p$

- **b.)** $(p \land q) \rightarrow (p \rightarrow q)$
- **c.**) $(\sim p \land (p \lor q)) \rightarrow q$
- **d.**) $(\sim p \land (p \rightarrow q)) \rightarrow \sim q$
- **e.**) $(p \rightarrow q) \land (q \rightarrow r) \rightarrow (p \rightarrow r)$ **f.**) $(p \lor q) \land (\sim p \lor r) \rightarrow (q \lor r)$
- 7. Show that each of these following statement is a tautology without using truth table.
 - **a.**) \sim (p \rightarrow q) \rightarrow p

b.) $(p \land (p \rightarrow q)) \rightarrow q$

c.) $\sim p \rightarrow (p \rightarrow q)$

- **d.**) \sim (p \rightarrow q) \rightarrow \sim q
- 8. Check if the following statements are logically equivalent or not.
 - a.) $p \rightarrow q$ and $\sim q \rightarrow \sim p$
- **b.)** $(p \rightarrow q) \land (p \rightarrow r)$ and $p \rightarrow (q \land r)$
- c.) $p \leftrightarrow q$ and $\sim p \leftrightarrow \sim q$
- **d.)** $\sim p \rightarrow (q \rightarrow r)$ and $q \rightarrow (p \lor r)$
- e.) $(p \rightarrow q) \rightarrow r$ and $p \rightarrow (q \rightarrow r)$ f.) $\sim (p \oplus q)$ and $p \leftrightarrow q$
- 9. Check whether following statements are satisfiable or not.
 - **a.**) $(p \rightarrow q) \land (q \rightarrow r) \rightarrow (p \rightarrow r)$ **b.**) $(p \land q) \rightarrow (p \rightarrow q)$
 - **c.**) $(p \lor q) \land (\sim p \lor r) \rightarrow (q \lor r)$ **d.**) $(p \land (p \rightarrow q)) \rightarrow q$
- 10. Use De Morgan's law to find the negation of these statements.
 - **a.)** Mikael has a phone and he has a laptop.
 - **b.)** Saumya will go to the concert or Soham will go the concert.
 - **c.)** Rahul is not intelligent but hard working.
 - **d.)** Carlos will bicycle or run tomorrow.
- 11. What does the statement $\forall x \ N(x)$ means if N(x) is "Computer x is connected to the network" and the domain consists of all computers on campus?
- 12. Show that if each of these following are logically equivalent.
 - a.) $\forall x p(x) \lor \forall x q(x)$ and $\forall x (p(x) \lor q(x))$
 - **b.)** $\exists x p(x) \land \exists x q(x) \text{ and } \exists x (p(x) \land q(x))$
- 13. Let P(x) be the predicate "x must take a discrete mathematics course" and let Q(x) be the predicate "x is a computer science student". Use quantifiers to express each of these statements:
 - a.) Every computer science student must take a discrete mathematics course.
 - **b.)** Everybody must take a discrete mathematics course or be a computer science student.
- 14. Express each of these using quantifiers.
 - a.) All dogs have fleas.
 - **b.)** Every bird can fly.
 - **c.)** There is no dog that can talk.
 - **d.)** No one can keep a secret.
 - **e.)** There exists a pig that can swim and catch fish.
 - **f.)** Some drivers do not obey the speed limit.

- **g.)** There is someone in this class who does not have a good attitude.
- 15. Let S(x) be the predicate " \mathbf{x} is a student", F(x) the predicate " \mathbf{x} is a faculty member", and A(x,y) the predicate " \mathbf{x} has asked \mathbf{y} a question," where the domain consist of all people associated with your school. Use quantifiers to express each of these statements.
 - **a.)** Every student has asked Professor Srijit a question.
 - **b.)** Some students has not asked any faculty member a question.
 - **c.)** There is a faculty member who has never been asked a question by a student.
 - **d.)** Some student has asked every faculty member a question.
 - **e.)** There is a faculty member who has asked every other faculty member a question.
 - **f.)** Every faculty member has either asked Professor Mikael a question or been asked a question by Professor Millar.