Assignment Set

Dated: 07/02/2019 \& Submission deadline: 1.30 PM,14/02/2019.
Submit in my office within the deadline. You can slip under my office door. Submission after deadline will lead 50% deduction of marks obtained.

1. Prove the validity of the following sequents:
(a) $p \rightarrow(q \vee r), \neg q, \neg r \vdash \neg p$
(b) $p \vee \neg p \vdash \neg(r \rightarrow q) \wedge(r \rightarrow q)$
2. Let us suppose we want to prove the proposition P. Let P_{1} and P_{2} are two propositions at least one of which is true. Then establish a logical equivalence with the help of these propositions to outline the method of "proof by cases". Hint. use $P_{1(2)} \rightarrow P$ is true
Prove the statement: There must be a prime between n and n !, where n is an integer greater than 2.
3. Prove: Let $x \in \mathbb{Z}$. If $x^{2}-6 x+5$ is even, then x is odd. Clearly state the method used for this proof.
4. Prove that set of rationals is countable.
5. Product of two even numbers is even

Prove the above statement by contradiction.
Prove the contrapositive of the above proposition.
6. Every amount of postage that is at least 12 cents can be made from 4-cent and 5-cent stamps

Give a proof of the proposition. What kind of method have you used here?
7. Prove every subset of a countable set is countable
8. Let $A=[-1,1]$, and let $f: A \rightarrow A, g: A \rightarrow A$, and $h: A \rightarrow A$ be functions defined by (i) $f(x) \sin x$, (ii) $g(x)=\sin \pi x$, and (iii) $h(x)=\sin \frac{\pi}{2} x$.

Check whether these functions are one-one, onto or bijective.
Let $B=[0,1]$. Is set B is equivalent to A ?

