## Answers

1. a.) $\sim \mathrm{p} \leftrightarrow \sim \mathrm{q}$

Swimming at the New Jersey shore is not allowed if and only if sharks have not been spotted near the shore.
b.) $\sim p \vee(p \wedge q)$

Swimming at the New Jersey shore is not allowed or swimming at the New Jersey shore is allowed and sharks have been spotted near the shore.
c.) $\sim p \rightarrow \sim q$

If swimming at the New Jersey shore is not allowed, then sharks have not been spotted near the shore.
d.) $q \rightarrow p$

If sharks have been spotted near the shore then Swimming at the New Jersey is allowed.
2.
a.) $r^{\wedge} \sim q$
b.) $\mathrm{p}^{\wedge} \mathrm{q}^{\wedge} \mathrm{r}$
c.) $\mathrm{r} \leftrightarrow(\mathrm{p} \vee \mathrm{q})$
d.) $(\mathrm{q} \rightarrow \mathrm{p}) \leftrightarrow \mathrm{r}$
e.) $r \rightarrow p$
3. a.) Converse: If I stay up late then I will sleep until noon.

Contrapositive: If i don't stay up late then I will not sleep until noon.
Inverse: If I don't sleep until noon then I haven't stayed up late.
b.) Converse: If I come to class then there will be a quiz.

Contrapositive: If I do not come to class then there will not be a quiz.
Inverse: If there is not going to be a quiz then i don't come to the class.
c.) Converse: A positive integer is a prime if it has no divisors other than 1 and itself.

Contrapositive: If a positive integer has a divisor other than 1 and itself then it is not prime.

Inverse: If a positive integer is not prime, then it has a divisor other than1 and itself.
d.) Converse: I will stay at home only if it snows tonight.

Contrapositive: I will not stay at home only if it doesn't snow tonight.
Inverse: If it doesn't snow tonight then I will not stay home.
4. (Hint: Draw Truth table using basic connectives)
5. (Hint: Dual is the negation of a connective. Let say dual of False is True, True is False, ${ }^{\wedge}$ is $\mathrm{V}, \mathrm{V}$ is ${ }^{\wedge}$ )
6. (Hint: Tautology is All true values in the table.)
7. (Hint: If final result is 1 then it is a tautology.)
8. (Hint: Verify using Truth Table or Reducing the proposition.)
9. (Hint: Satisfiable is either tautology or contingency. Either all values are true by the end or at least one is true. All values should not be false.)
10. (Hint: De Morgan's law:

$$
\begin{aligned}
& \sim\left(p^{\wedge} q\right)=\sim p \vee \sim q \\
& \sim(p \vee q)=\sim p^{\wedge} \sim q
\end{aligned}
$$

11. $\forall \mathrm{x} N(\mathrm{x})$ means: Every computer on campus is connected to the network.
12. (Hint: Use De Morgan's law for Universal quantifiers)
13. a.) $\forall \mathrm{x}(\mathrm{S}(\mathrm{x}) \rightarrow \mathrm{P}(\mathrm{x}))$
b). $\forall \mathrm{x}(\mathrm{S}(\mathrm{x}) \vee \mathrm{P}(\mathrm{x}))$
14. a.) $\forall \mathrm{x}(\mathrm{D}(\mathrm{x}) \rightarrow \mathrm{F}(\mathrm{x}))$
b.) $\forall \mathrm{x}(\mathrm{B}(\mathrm{x}) \rightarrow \mathrm{F}(\mathrm{x}))$
c.) $\sim \exists \mathrm{xT}(\mathrm{x})($ Domain: Dog)
d.) $\neg \exists x \mathrm{~S}(\mathrm{x})($ Domain: People)
e.) $\exists x(P(x) \wedge S(x) \wedge F(x)))$
f.) $\exists \mathrm{x} \neg \mathrm{S}(\mathrm{x})(\mathrm{S}(\mathrm{x})$ be the predicate " x obeys the speed limit" and Domain is drivers)
g.) $\exists \mathrm{x} \neg \mathrm{A}(\mathrm{x})(\mathrm{A}(\mathrm{x})$ be the predicate " x has a good attitude" and Domain is everyone in class)
15. a.) $\forall \mathrm{x}(\mathrm{S}(\mathrm{x}) \rightarrow \mathrm{A}(\mathrm{x}$, Professor Srijit) $)$
b.) $\exists \mathrm{x}\left(\mathrm{S}(\mathrm{x})^{\wedge} \forall \mathrm{y}(\mathrm{F}(\mathrm{y}) \rightarrow \sim \mathrm{A}(\mathrm{x}, \mathrm{y}))\right)$
c.) $\exists \mathrm{x}\left(\mathrm{F}(\mathrm{x})^{\wedge} \forall \mathrm{y}(\mathrm{S}(\mathrm{y}) \rightarrow \sim \mathrm{A}(\mathrm{y}, \mathrm{x}))\right)$
d.) $\forall y(F(y) \rightarrow \exists x(S(x) \vee A(x, y)))$
e.) $\exists \mathrm{x}\left(\mathrm{F}(\mathrm{x})^{\wedge} \forall \mathrm{y}\left(\left(\mathrm{F}(\mathrm{y})^{\wedge}(\mathrm{y} \neq \mathrm{x})\right) \rightarrow \mathrm{A}(\mathrm{x}, \mathrm{y})\right)\right)$
f.) $\forall \mathrm{x}(\mathrm{F}(\mathrm{x}) \rightarrow(\mathrm{A}(\mathrm{x}$, Professor Mikael $) \vee \mathrm{A}($ Professor Mikael, x$)))$
