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A B S T R A C T

A computational and experimental study is conducted to examine how directivity associated with a finite
aperture sensor affects photoacoustic tomography (PAT) image reconstruction. Acoustic signals for the
simulation work were computed using a discrete particle approach from three numerical phantoms including a
vasculature. The theoretical framework and a Monte Carlo approach for construction of a tissue configuration
are discussed in detail. While simulating forward data, the directivity of the sensor was taken into account.
The image reconstruction was accomplished using system matrix based methods like 𝑙2 norm Tikhonov
regularization, 𝑙1 norm regularization and total variation (TV) minimization. Accordingly, two different system
matrices were constructed- (i) assuming transducer as a point detector (PD) and (ii) retaining properties of
a finite detector with directivity (FDWD). Image reconstruction was also performed utilizing experimentally
measured PA signals. Both the computational and experimental results demonstrate that blur-free PAT imaging
can be achieved with the FDWD method. Additionally, TV minimization provides marginally better image
reconstruction compared to the other schemes.
1. Introduction

Photoacoustic tomography (PAT), also called optoacoustic tomog-
raphy, is a non-invasive imaging modality. It is a hybrid technique
combining the high contrast of optical imaging and high resolution of
ultrasound imaging (Wang, 2017). The underlying phenomenon of PAT
imaging is the photoacoustic (PA) effect. In the PA effect, a biological
sample containing chromophores is illuminated with short laser pulses
that induce rapid thermo-elastic expansion of the tissue generating
acoustic/pressure waves. The wide-band PA signals are collected by
ultrasound transducers that surround the tissue in a typical PAT setup.
The captured signals are then used to produce/reconstruct the map
of the initial pressure rise. The PAT modality has many biomedical
imaging applications (Yao and Wang, 2021; Manohar and Dantuma,
2019; Yao and Wang, 2018; Nyayapathi et al., 2019; Sangha et al.,
2022; Li et al., 2021; Na et al., 2022; Bohndiek et al., 2015; Nandy
et al., 2018). Recently, exquisite images of small-animal whole-body
have been generated at high spatiotemporal resolution using a 512-
element full-ring ultrasonic transducer array, central frequency = 5
MHz, one-way bandwidth > 90% (Li et al., 2017). Similar setup has
also been employed for PAT imaging of human breasts (Lin et al.,
2018).
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The PAT image reconstruction methods can be divided into two
categories — analytical techniques and model based schemes. The
backprojection (BP) (Xu and Wang, 2005; Warbal et al., 2019) and time
reversal (TR) (Treeby and Cox, 2010) algorithms fall under the first
category and are commonly used for PAT image reconstruction. These
methods are non-iterative, fast and easy to implement but lack to pro-
vide quantitatively accurate images. The 𝑙2 norm based Tikhonov reg-
ularization, 𝑙1 norm based regularization and total variation (TV) min-
imization procedures are the examples of the second category (Paltauf
et al., 2002; Rosenthal et al., 2010; Prakash et al., 2018). These meth-
ods are iterative and require the generation and inversion of a system
matrix (which is a large ill-conditioned matrix). Hence, the protocols
become computationally expensive. They can facilitate quantitatively
accurate images even for a limited-view data set.

In general, a single-element, unfocused transducer of finite aperture
circularly scans the imaging region and records pressure signals. The
angular response of a detector with a finite aperture is not uniform
(rather direction-dependent) (Szabo, 2004). It is most sensitive along
its axis and gradually becomes less sensitive as the angle of the source
point (in the far field) increases. In addition to that, a realistic trans-
ducer transforms a delta pulse into a pulse of finite width due to its
finite aperture. Therefore, the width and magnitude of the broad pulse
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(i.e., the output pulse of the transducer) depend upon the direction
from which the input pulse is coming. As a result of that, a practical
detector, if it is approximated as a point detector during reconstruc-
tion, introduces banding artifacts and significant blurring in a PAT
image (Treeby and Cox, 2010; Cox and Treeby, 2010; Warbal and
Saha, 2022a). Treeby et al. observed banding artifacts in PAT images
arising due to the directionality of the transducer elements even after
having the full-view of the measurement surface (Treeby and Cox,
2009; Cox and Treeby, 2010). Schoonover et al. also noticed the same
unwanted banding artifacts in the reconstructed images (Schoonover
et al., 2012). It is worthy to mention here that there are other sources
of blurring as well in the PAT imaging- (i) finite temporal width of
the input laser beam, (ii) limited bandwidth of the detector and (iii)
acoustically lossy and dispersive medium (Warbal and Saha, 2022b).

Several works have been performed to examine the effect of fi-
nite size transducer on PAT imaging. Accordingly, proposed various
strategies to mitigate this issue. For example, i) a small transducer
can be used, (ii) a large scanning radius can be set; however, these
solutions will reduce the signal-to-noise ratio and therefore, are un-
desirable (Yang et al., 2007). A negative acoustic lens mounted on a
planner transducer was also utilized to address this problem (Pramanik
et al., 2009). Wang et al. and Roitner et al. applied deconvolution
approaches to overcome the negative effect of finite aperture trans-
ducer in PAT images (Wang et al., 2004b; Roitner et al., 2014). A
spatiotemporal optimal filter was also designed to deal with this prob-
lem (Li et al., 2010). Lua et al. introduced a space-variant filter-based
modified back-projection method to improve image quality and reduce
time consumption in optoacoustic mesoscopy by effectively addressing
the spatial impulse response (Lu et al., 2020). This has been studied
previously as well (Araque Caballero, 2013). Seeger et al. expanded the
capabilities of optical-resolution optoacoustic microscopy, by reporting
spatially-dependent total impulse response (TIR) correction, with a
novel method using spatially-distributed optoacoustic point sources
(SOAPs) in 2020 (Seeger et al., 2020). Chowdhury et al. introduced
a novel synthetic total impulse response characterization method for
improving the accuracy of hand-held optoacoustic images (Chowd-
hury et al., 2020). Wang et al. carried out a detailed study on this
topic (Wang et al., 2010). This group built a system matrix by incor-
porating the properties of the ultrasonic transducer and subsequently,
formed PAT images via model matrix inversion procedure. This strategy
was found to be effective in improving the spatial resolution of the
images. The model matrix based approach was also employed by us
to study the same (Warbal and Saha, 2022a).

The problem of degradation of image quality in PAT imaging due
to the usage of a transducer of finite aperture is revisited here. This
has been investigated by employing computational and experimental
means. The study considers 2D imaging regions. The advantages of
this approach (2D setup) are- (i) low cost because a single-element
transducer typically circularly scans the region of interest and captures
the PA signals, (ii) single channel data acquisition card is needed, (iii)
computational load is manageable and thus model-based methods can
be utilized and (iv) effectiveness of a new algorithm can easily be vali-
dated experimentally. For these reasons, 2D setup has been extensively
used for proof-of-concept experiments (Warbal et al., 2019; Pramanik,
2014; Xia and Wang, 2012). As mentioned earlier, the directivity effect
for a single-element transducer induces unwanted distortions in the
reconstructed images. The present study serves as a proof-of-concept
work, focusing on how to remove such distortions utilizing model-based
methods.

This work first discusses a generalized version of the theoretical
model for PA signal simulation presented in Warbal and Saha (2022a).
Essentially, the PA signal from a source with a regular shape is cal-
culated using the exact method and subsequently, convolved with the
spatial impulse response function (SIRF) of a realistic transducer. Such
signals emitted by a collection of absorbers are added linearly to
2

form a resultant signal. This is called the discrete particle approach
which properly models the effect of the transducer with finite aper-
ture while generating forward data. This theoretical framework has
been extensively used in ultrasonic tissue characterization (Wagner
et al., 1987; Shung and Thieme, 1992). The PA signals from three
test phantoms, namely, three-point, multi-disc and vasculature, were
generated for image reconstruction. A realization of the vasculature
phantom was simulated by deploying a Monte Carlo method known as
the random sequential adsorption (RSA) technique. Thus, the structural
details became available in the microscopic regime. The system matrix
based methods like 𝑙2 norm based Tikhonov regularization, 𝑙1 norm
based regularization and TV methods were realized herein for image
reconstruction. In building the system matrix, the angular response of
the sensor was incorporated. It is referred to as the finite detector with
directivity (FDWD) method in the remaining text. The system matrix
was also been constructed for point detector and accordingly, images
were created for comparison (this is mentioned as a PD technique in
the rest of the manuscript). The experiments were conducted too to
validate our findings. The numerical and experimental results confirm
that the impact of finite size detector can best be mitigated if FDWD
and TV minimization work together.

2. Mathematical ingredients

2.1. Forward problem

2.1.1. Calculation of PA field for a spherical absorber
Assuming thermal and stress confinements, the PA field at a point

𝐫 due to a spherical absorber of radius 𝑎 and located at 𝐫0 is given
by Wang (2017),

P(𝐫) = 𝐸𝐼0 Q(𝜔) 𝑒𝑖𝑘𝑓 |𝐫−𝐫0|

|𝐫 − 𝐫0|
, (1)

where 𝐸 = 𝑖𝜇𝑎𝛽𝑣𝑠𝑎2

𝐶𝑃
; 𝜇𝑎, 𝛽, 𝐶𝑃 and 𝑣𝑠 indicate the optical absorption

coefficient, isobaric thermal expansion coefficient, specific heat and
speed of sound for the fluid medium inside the PA source, respectively;
𝑘𝑓 is the wave number for the acoustic wave in the surrounding fluid
medium. The notation 𝐼0 stands for the intensity of the incident optical
radiation, 𝜔 is its modulation frequency and Q(𝜔) is defined as,

Q(𝜔) =
[sin(𝑞) − 𝑞 cos(𝑞)]𝑒−𝑖𝑘𝑓 𝑎

𝑞2[(1 − �̂�) sin(𝑞)∕𝑞 − cos(𝑞) + 𝑖�̂��̂� sin(𝑞)]
ith 𝑞 = 𝑘𝑠𝑎, �̂� = 𝜌𝑠∕𝜌𝑓 and �̂� = 𝑣𝑠∕𝑣𝑓 . Here, 𝑣, 𝜌 and 𝑘 represent the

peed of sound, density and wave number, respectively. The subscripts
and 𝑓 refer to the source and the ambient medium, respectively.

.1.2. Computing PA signal for a finite detector
onodisperse absorbers. If an ensemble of monodisperse absorbers with

dentical physical properties is uniformly illuminated by a laser beam
hen the collective PA field can be computed by applying the linear
uperposition principle as (Warbal and Saha, 2022a),

(𝐫) =
𝑁
∑

𝑛=1
𝐸𝐼0Q(𝜔) 𝑒

𝑖𝑘𝑓 |𝐫−𝐫𝑛|

|𝐫 − 𝐫𝑛|
, (2)

where 𝑁 is the total number of spherical sources. The PA signal
corresponding to a delta function heating pulse becomes,

P(𝐫, 𝑡) =
𝑁
∑

𝑛=1

𝐸𝐹
2𝜋 ∫

∞

−∞
Q(𝜔) 𝑒

𝑖𝑘𝑓 |𝐫−𝐫𝑛|

|𝐫 − 𝐫𝑛|
𝑒−𝑖𝜔𝑡𝑑𝜔, (3)

where 𝐹 is fluence of the exciting light pulse. This methodology is
called the discrete particle approach because the resultant PA signal
is calculated by summing the signals emitted by the individual sources.

Eq. (3) is valid when the pressure field is measured by a point
detector. However, a real detector has a finite aperture. The expression
for the PA signal captured by such a finite sensor can be cast as (Warbal
and Saha, 2022a),

P(𝑡) = P(𝐫, 𝑡) 𝑑2𝐫, (4)
∫ ∫𝑆𝐴



Results in Optics 13 (2023) 100528P. Warbal and R.K. Saha

w
f
t
w

P

w

𝑝

a

𝑔

w

Q

N
a
t

2

H
s

w
i
m
i
m
A

f
c

X

w
s
p
h
b

2

u
b

X

H
h
t
m
i
o
L
s
l
𝜆
e
p
t
i
f
e

X

w
p

A

where, 𝑆𝐴 is the surface area of the aperture of the sensor. Using
Eqs. (3) and (4), we get,

P𝑛𝑏𝑙(𝑡) = ∫ ∫𝑆𝐴
𝑑2𝐫

𝑁
∑

𝑛=1

𝐸𝐹
2𝜋 ∫

∞

−∞
Q(𝜔) 𝑒

𝑖𝑘𝑓 |𝐫−𝐫𝑛|

|𝐫 − 𝐫𝑛|
𝑒−𝑖𝜔𝑡𝑑𝜔

= 𝐸𝐹
𝑁
∑

𝑛=1
∫

∞

−∞
𝑑𝜔𝑒−𝑖𝜔𝑡Q(𝜔)∫ ∫𝑆𝐴

𝑒𝑖𝑘𝑓 |𝐫−𝐫𝑛|

2𝜋|𝐫 − 𝐫𝑛|
𝑑2𝐫

= 𝐸𝐹
𝑁
∑

𝑛=1
∫

∞

−∞
𝑑𝜔𝑒−𝑖𝜔𝑡Q(𝜔)𝐺𝐷(𝜔), (5)

here 𝐺𝐷(𝜔) = ∫ ∫𝑆𝐴
𝑒𝑖𝑘𝑓 |𝐫−𝐫𝑛 |

2𝜋|𝐫−𝐫𝑛|
𝑑2𝐫 is the directivity function for the

inite sensor (Karmakar et al., 2015). The subscript 𝑛𝑏𝑙 demonstrates
hat the signal is non-bandlimited in nature. Eq. (5) can further be
ritten in a compact form as,

𝑛𝑏𝑙(𝑡) =
𝑁
∑

𝑛=1
[𝑝(𝑡) ∗ 𝑔(𝐫𝑛, 𝑡)], (6)

here

(𝑡) = 𝐸𝐹
2𝜋 ∫

∞

−∞
Q(𝜔)𝑒−𝑖𝜔𝑡𝑑𝜔, (7)

nd

(𝐫𝑛, 𝑡) = ∫ ∫𝑆𝐴

𝛿(𝑡 − |𝐫 − 𝐫𝑛|∕𝑣𝑓 )
2𝜋|𝐫 − 𝐫𝑛|

𝑑2𝐫, (8)

with ∗ is the convolution operation and 𝑔(𝐫𝑛, 𝑡) is the SIRF of the
detector.

Polydisperse absorbers. The above theoretical framework can readily be
generalized in order to calculate the resultant PA signal generated by a
collection of polydisperse PA sources when excited homogeneously by
the input radiation. In that case, Eq. (6) converts into,

P𝑛𝑏𝑙(𝑡) =
𝑁
∑

𝑛=1
[𝑝𝑛(𝑡) ∗ 𝑔(𝐫𝑛, 𝑡)]. (9)

Here, 𝑝𝑛(𝑡) takes the form,

𝑝𝑛(𝑡) =
𝐸𝑛𝐹
2𝜋 ∫

∞

−∞
Q𝑛(𝜔)𝑒−𝑖𝜔𝑡𝑑𝜔, (10)

ith 𝐸𝑛 =
𝑖𝜇𝑎𝛽𝑣𝑠𝑎2𝑛

𝐶𝑃
and

𝑛(𝜔) =
[sin(𝑞𝑛) − 𝑞𝑛 cos(𝑞𝑛)]𝑒

−𝑖𝑘𝑓 𝑎𝑛

𝑞𝑛
2[(1 − �̂�) sin(𝑞𝑛)∕𝑞𝑛 − cos(𝑞𝑛) + 𝑖�̂��̂� sin(𝑞𝑛)]

.

ote that in the above derivation, it has been assumed that the sources
re of different sizes but the opto-thermo-mechanical parameters are
he same.

.1.3. Estimation of band-limited signal
Note that the expression for P𝑛𝑏𝑙(𝑡) contains all possible frequencies.

owever, a real transducer is a bandlimited detector. The bandlimited
ignal can easily be yielded by filtering the 𝑛𝑏𝑙 signal with a cosine

Gabor filter as given below,

P(𝑡) = Re
[

P𝑛𝑏𝑙(𝑡)
]

∗
𝜎𝑏𝑤
√

2𝜋
exp(−

𝜎2𝑏𝑤𝑡
2

2
) cos(2𝜋𝑓0𝑡), (11)

where the real part of the 𝑛𝑏𝑙 signal is taken; 𝑓0 is the center frequency
of the transducer and 𝜎𝑏𝑤 is related to its −6 dB bandwidth (denoted
by 𝑏𝑤). In this work, Eq. (11) has been evaluated numerically to com-
pute the bandlimited resultant PA signal produced by many uniformly
illuminated monodisperse/polydisperse spherical absorbers.

2.2. Inverse problem

The problem of PAT image reconstruction can be modeled as a
system of linear equations (Prakash et al., 2014),

𝑚×𝑛 𝑚 𝑛
3

A X = P , A ∈ R , P ∈ R and X ∈ R (12)
here A is the system matrix; X is the initial pressure map of the
lluminated region in the form of a long column vector and P contains
easured pressure data (also a long column vector). The system matrix

n general incorporates various properties of the incident laser beam,
edium and detectors. The exact solution is possible for Eq. (12) when
is a square matrix (i.e., 𝑚 = 𝑛) and invertible (|A | ≠ 0). In case of

ailing to meet this condition (e.g., 𝑚 > 𝑛), the method of least squares
an be employed to get the following solution,

𝑠𝑜𝑙 = arg min(‖A X − P‖

2
2), (13)

here ‖ − ‖2 is the 𝑙2 norm. However, the traditional methods for
olving Eq. (13) may not give meaningful solutions for discrete ill-posed
roblems (Hansen, 2007). Three different methods for solving Eq. (12)
ave been invoked herein and these algorithms are described below in
rief.

.2.1. l2 norm based solution
The Tikhonov regularization method has been almost exclusively

tilized to solve Eq. (12) when 𝑚 ≠ 𝑛. The corresponding solution can
e written as (Rosenthal et al., 2010),

𝑠𝑜𝑙 = arg min(‖A X − P‖

2
2 + 𝜆2‖X ‖

2
2). (14)

ere, 𝜆 is the regularization parameter. The first term on the right
and side of Eq. (14) is called the fidelity term and the second one is
he penalty term. The impact of the penalty term depends upon the
agnitude of 𝜆. A higher 𝜆 value renders over smoothening of the

mage whereas a lower 𝜆 value amplifies the noise. A suitable value
f 𝜆 can be estimated by employing the L-curve or GCV technique. The
-curve method is a graphical approach. In this procedure, a plot of
olution norm versus residual norm is generated in a log–log scale. The
ocation of maximum curvature of that graph provides the optimum
. This method may be time taking and is sensitive to curvature
stimation. The GCV method is a data-driven approach that uses the
rinciple of minimizing the error between the reconstructed image and
he ground truth. The numerical value of the regularization parameter
s obtained by minimizing the GCV score. It may pose difficulty in
inding the optimum 𝜆 when the GCV function becomes flat (Ramani
t al., 2012; Hansen and O’Leary, 1993).

For this method, a closed form solution can be derived as,

𝑠𝑜𝑙 = (A 𝑇 A + 𝜆2X )−1A 𝑇 P , (15)

here A 𝑇 is the transpose of A . Eq. (15) can further be simplified by
erforming singular value decomposition (SVD) of A ,

= 𝐽𝑊𝐻𝑇 =
𝑛
∑

𝑖=1
𝑗𝑖𝑤𝑖ℎ

𝑇
𝑖 , (16)

where 𝐽 = (𝑗1, 𝑗2,… , 𝑗𝑛) and 𝐻 = (ℎ1, ℎ2,… , ℎ𝑛) are the left and right
unitary matrices, respectively; 𝑊 = diag(𝑤1, 𝑤2,… , 𝑤𝑛) is the singular
matrix with 𝑤1 ≥ 𝑤2 ≥ .... ≥ 𝑤𝑛.

Replacing A in Eq. (15) with Eq. (16), one obtains,

X𝑠𝑜𝑙 = (𝐻𝑊 𝑇𝑊𝐻𝑇 + 𝜆2𝐼)−1𝐻𝑊 𝑇 𝐽𝑇 P

= 𝐻(𝑊 𝑇𝑊 + 𝜆2)−1𝑊 𝑇 𝐽𝑇 P

=
𝑛
∑

𝑖=1

𝑤𝑖(𝑗𝑇𝑖 P)

𝑤2
𝑖 + 𝜆2

ℎ𝑖. (17)

The filter factors 𝑤𝑖
𝑤2
𝑖 +𝜆

2 in Eq. (17) retain the contributions from the
larger singular values and those of small singular values are discarded.

2.2.2. l1 norm based solution
Another approach for finding out the solution of Eq. (12) is to add a

𝑙1 norm penalty term into Eq. (13) and then minimize the cost function.
The solution appears like,

X = arg min(‖A X − P‖

2 + 𝜆‖X ‖ ). (18)
𝑠𝑜𝑙 2 1
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Fig. 1. Numerical phantoms considered in this study- (a) three-point phantom, (b) multi-disc phantom and (c) vasculature phantom. The images are accompanied by a color bar
indicating the numerical values of the gray levels.
The cost function is not always differentiable and thus an analytical
solution does not exist in this case. One has to rely on numerical so-
lutions. Several numerical strategies have been developed for yielding
solutions (Daubechies et al., 2004; Beck and Teboulle, 2009; Goldstein
et al., 2014; Afonso et al., 2010). The 𝑙1 norm regularization is known to
provide sparse solutions. Many PAT studies utilized this regularization
scheme for image reconstruction (Prakash et al., 2018; Guo et al.,
2010).

2.2.3. TV minimization based solution
In order to solve Eq. (12), the total variation minimization method

can also be used. As in the previous cases, a penalty term, involving
a derivative of the unknown, is added to the fidelity term. After that
solution is sought by minimizing the cost function. The solution looks
like (Li et al., 2013),

X𝑠𝑜𝑙 = arg min( 1
2
𝜂‖A X − P‖

2
2 +

∑

𝑖
‖𝐷𝑖X ‖1, ). (19)

where 𝐷𝑖 is the discrete gradient operator on X at the 𝑖th position; the
parameter 𝜂 is positive definite. The penalty term ensures that the solu-
tion will exhibit less variation in space. In particular, a positive definite
parameter in the regularization term penalizes only high-frequency
variations often associated with the noise in the reconstructed image,
while leaving low-frequency variations corresponding to important im-
age features unchanged. A positive definite parameter ensures that the
regularization term is well-behaved and has a unique minimum, which
is important for the convergence and stability of the minimization
process (Wood, 2004). Analytical solution cannot be derived in this
case as well and thus solutions are obtained by deploying different
numerical means. This framework can faithfully suppress noise and
streak artifacts in the reconstructed image (Han et al., 2015). The
algorithm has been explored by many groups for PAT imaging (Yao
and Jiang, 2011; Prakash et al., 2018; Kong et al., 2018). Some of the
variants of TV available in the literature are anisotropic TV, isotropic
TV, higher-order TV, and total generalized variation (TGV). We used
the anisotropic variant in our work. The time taken by different variants
depend on several factors, including the size of the image, the complex-
ity of the TV term, the specific algorithm used, and the hardware used
for computation (Lv et al., 2013; González et al., 2017).

2.3. Image quality metrics

Deciding that one image is better than the other, differs from one
person to another. Hence, we need a quantitative approach to compare
the quality of an image. Various image quality metrics have been
developed so far for this purpose (Thung and Raveendran, 2009). Some
of the standard metrics used to assess the performance of reconstruction
methods are root mean square error (RMSE), Pearson correlation coeffi-
cient (PCC), contrast to noise ratio (CNR) and structure similarity index
measure (SSIM) (Warbal and Saha, 2022a). The image quality metrics
were only calculated for the simulated images. These are described
below.
4

Root mean square error (RMSE). The RMSE can be computed as follows,

RMSE =

√

∑𝑀
𝑖=1[X (𝑖) − X𝑠𝑜𝑙(𝑖)]2

𝑀
, (20)

where X , X𝑠𝑜𝑙 and 𝑀 are the ground truth, reconstructed images and
the number of pixels in an image, respectively. The RMSE approaches
to zero when X and X𝑠𝑜𝑙 are identical.

Pearson correlation coefficient (PCC). The PCC provides information
about the similarity between the target and the reconstructed images.
The formula for PCC is,

PCC =
COV(X ,X𝑠𝑜𝑙)

𝜎X 𝜎X𝑠𝑜𝑙

, (21)

where COV, 𝜎X , and 𝜎X𝑠𝑜𝑙
are the covariance between X and X𝑠𝑜𝑙

image matrices, standard deviation of X and standard deviation of
X𝑠𝑜𝑙, respectively. The range of the PCC value is from −1 to 1. The
PCC values closer to 1 indicate better reconstructions.

Contrast to noise ratio (CNR). The CNR is defined as (Song et al., 2004),

CNR =
𝜉𝑟𝑜𝑖 − 𝜉𝑏𝑎𝑐𝑘

(𝜎2𝑟𝑜𝑖𝑛𝑟𝑜𝑖 + 𝜎2𝑏𝑎𝑐𝑘𝑛𝑏𝑎𝑐𝑘)
1
2

, (22)

where ‘roi’ and ‘back’ stand for the source and the background domains
of the reconstructed image, respectively. Here, 𝜉 is the mean pressure
value; 𝑛𝑟𝑜𝑖 = 𝐴𝑟𝑜𝑖∕𝐴𝑡𝑜𝑡𝑎𝑙 and 𝑛𝑏𝑎𝑐𝑘 = 𝐴𝑏𝑎𝑐𝑘∕𝐴𝑡𝑜𝑡𝑎𝑙 where 𝐴𝑟𝑜𝑖 and 𝐴𝑏𝑎𝑐𝑘
are the total number of pixels in the source image with initial pressure
not equal to 0 and equal to 0, respectively; 𝐴𝑡𝑜𝑡𝑎𝑙 is the total number of
pixels in the original/reconstructed image.

Structure similarity index measure (SSIM). The similarity in structure
between the ground truth and the reconstructed image can be quan-
tified using the SSIM parameter. The expression for the SSIM is given
by Wang et al. (2004a),

SSIM =
(2𝜉X 𝜉X𝑠𝑜𝑙

+ 𝑐1)(2 COV(X ,X𝑠𝑜𝑙) + 𝑐2)

(𝜉2
X

+ 𝜉2
X𝑠𝑜𝑙

+ 𝑐1)(𝜎2X + 𝜎2
X𝑠𝑜𝑙

+ 𝑐2)
. (23)

The constants 𝑐1 and 𝑐2 stabilize Eq. (23) in case of weak denomina-
tor. The pressure values associated with the pixels in the nominal and
the reconstructed images were first brought into the same scale (using
shifting and scaling) ranging from 0 to 1 covering 256 gray levels. Later
those matrices were given as inputs to the SSIM function of MATLAB
to estimate the SSIM between the two images.

3. Computational and experimental methods

3.1. Computational methods

3.1.1. Numerical phantoms
Three binary phantoms were employed in the present work. Fig. 1

displays 2D cross-sections of these imaging regions. These are referred
to as the three-point, multi-disc and vasculature phantoms in the text.
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Fig. 2. Computational setup for forward data simulation in PAT.

The normalized pressure values are represented by the color bars,
where black and white regions correspond to pressure values of 1
and 0 Pa, respectively. The first phantom consisted of three spherical
sources of diameter 0.4 mm placed axially at distances 0, 3.2 and
6.4 mm, respectively from the center of the imaging domain of size
20 × 20 mm2. The spatial variation of tangential resolution of PAT
imaging was studied using this phantom. The second phantom as given
in Fig. 1(b) contained six spheres of different diameters (0.5, 0.6, 1.6,
2.0, 2.4 and 3.0 mm) and placed at different positions within the region
of interest.

The vasculature phantom as shown in Fig. 1(c) was made by imple-
menting a Monte Carlo method as described herein. At first, a binary
image of a blood vessel network was scanned at a resolution of 600 dots
per inch. The image size was 20 × 20 mm2 vis-a-vis 473 × 473 pixels.
A value of 1 was marked for the pixels that contained the vasculature
and 0 for the remaining pixels. The corresponding area covered by the
vasculature was ≈ 39 mm2. These pixels (with tag 1) were filled with
RBCs approximated as spheres of radius 𝑎 = 2.92 μm. A total of 579 037
such spheres were randomly placed within those pixels (with tag 1).
The RSA method, which is a popular Monte Carlo algorithm, was used
for this purpose (Saha, 2021; Berryman, 1983). Neither the cells inside
the same pixel nor those of the neighboring pixels overlapped. The
RBCs occupied an area of 15.5 mm2 so that the hematocrit level was
maintained at ≈ 0.4. Therefore, it was indeed a sparse matrix/image
but retained the microscopic details of the vascular structure. The same
procedure was also realized in Prakash et al. (2020), Warbal and Saha
(2022a), Saha (2021). This Monte Carlo approach for tissue simulation
took nearly 2 min in a virtual machine [CentOS, Intel Core Processor
(Broadwell, IBRS), 2.19 GHz, 256 GB RAM, and 80 cores]. Fig. 1(c) can
be considered as a 2D cross-section of a 3D tissue.

3.1.2. Generation of forward data
A representative PAT simulation setup for generating the forward

data is displayed in Fig. 2. For each phantom, opto-thermo-mechanical
parameters such as 𝐼0, 𝜇𝑎, 𝛽 and 𝐶𝑃 of the absorbers were taken as
unity (Prakash et al., 2020). The speed of sound was fixed to 𝑣𝑠 =
𝑣𝑓 = 1480 m∕s; the density was considered as 𝜌𝑠 = 𝜌𝑓 = 1000 kg∕m3.
The scanning radius was taken as 24.4 mm. The position coordinates of
all the individual sources were stored beforehand with respect to the
coordinate system of the phantom. These coordinates relative to a de-
tector were then determined by performing an appropriate coordinate
transformation (Warbal and Saha, 2022a).

Assume a spherical PA source. A wide range of frequencies (0.001
to 1000 MHz with an increment of 0.01 MHz) were considered for
calculating the PA signal for such a source by evaluating Eq. (7). The
sampling frequency was set at 2000 MHz. The SIRF for that source
5

depending upon its position with respect to a detector (of diameter
10 mm) was estimated at the same sampling frequency. The func-
tions, namely xdc_piston and calc_h of Field II were employed for this
task (Jensen and Svendsen, 1992). The PA signal was convolved with
the SIRF and stored in a long vector of size 1 × 160 000 (this vector
essentially corresponded to a time array of the same length having
interval 0.5 ns and start time = 0 ns). In this way, the PA signals for
all individual sources were calculated and appropriately (based on the
start times) added with the long vector to generate the resultant PA
signal. After that the resultant signal was filtered with the Gabor filter
which mimicked a transducer with center frequency 𝑓0 = 2.25 MHz
and 70% as the fractional bandwidth. Further, the filtered PA signal
was downsampled 80 times (Prakash et al., 2020). This process was
repeated for 100 detectors uniformly placed over 0 to 2𝜋. The size of
the measurement matrix P after the truncation was 60 100 × 1. The
computation time for PA signal simulation for 100 detectors for the first
two phantoms was about 10 s whereas, it was approximately 29 h for
the vasculature phantom in the same computer (virtual machine). The
effect of sensor directivity was thus incorporated in this technique.

3.1.3. Formation of system matrix
The imaging domain [see Fig. 2] was divided into 101 × 101 =

10 201 grid points with 𝑑𝑥 = 𝑑𝑦 = 200 μm. Therefore, the size of the
X matrix became 10201 × 1. The coordinates were stored relative to
the coordinate system of the phantoms. At first, the PA signal from
a sphere of radius 50 μm was computed. The SIRF for a particular
detector and a grid point pair was also generated after the required
coordinate transformation. The SIRF was convolved with that PA signal
to obtain the signal emitted by that grid point and detected by the finite
sensor. In the next step, filtering and downsampling were performed
on this high-frequency signal. The downsampled signal was truncated
between 100 and 700 time steps. Subsequently, the PA signals from
all grid points captured by that detector were evaluated and filled into
the A matrix. The same procedure was realized for all the detectors.
The size of the A matrix would be 60 100 × 10 201. In this way, the
A matrix was constructed for the FDWD method. The time taken to
build A matrix for 100 detectors was about 7 h 20 min for a 10 mm
transducer. The angular response of each detector for each grid point
was incorporated within the system matrix in this approach. The system
matrix for the PDs was also built. The PA signal emitted by that sphere
was recorded as the reference signal. The scaling and shifting properties
of the PA signal were utilized for computing the signals from all grid
points and detectors. Those signals (after filtering and downsampling)
were loaded into the system matrix. Building A matrix for PDs took
about 4 h 18 min. Note that the finite aperture size and directivity
effects of the transducer were not incorporated in the PD scheme.

3.1.4. Reconstruction of PAT images
The initial pressure distribution was then computed using the three

reconstruction algorithms. Eq. (17) was computed for reconstructing an
image using the first technique. This was achieved by deploying the
csvd, l_curve and Tikhonov functions available in the regularization
toolbox (Hansen, 2007). The positivity constraint was enforced by
replacing the negative gray scale values in the reconstructed image with
zeros. In the second method, Eq. (18) was evaluated for obtaining the
initial pressure map of the region of interest. The function fista_lasso of
the FISTA toolbox was employed for this purpose and the positivity
constraint was included by setting ‘opts.pos’ function as ‘true’(Beck
and Teboulle, 2009). The TVAL toolbox was utilized to implement
Eq. (19) for image creation. Here, the ‘opts.nonneg’ must be set to
‘true’ for ensuring the non-negative gray values of an reconstructed
image. An initial guess of 𝜆 for the first reconstruction protocol was
determined by the L-curve method for each phantom. After that fine
tuning of 𝜆 was carried out heuristically to obtain the best reconstructed
image. In other words, the 𝜆 value was varied over a wide range —
the initial guess was multiplied by a vector [0.00001, 0.0001, 0.001,
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Fig. 3. Photographs of the phantoms used in the experimental study- (a) three-pencil-lead phantom, (b) multi-disc phantom and (c) vasculature phantom.
Fig. 4. Schematic diagram of the experimental setup.
0.01, 0.1, 1, 10, 100, 1000]. For each 𝜆, an image was generated and
the PCC value was computed with respect to the ground truth. The
image with the highest PCC value was taken as the best image and
the corresponding numerical value of the regularization parameter was
considered the optimal value. Similarly, for the TV scheme, 𝜂 and 𝜁
values were tuned for finding out the best solution. The numerical
values of 𝜂 and 𝜁 were altered as 2𝑛 from 𝑛 = 4 to 13. The images
reconstructed using the FDWD method were compared with those of the
PD approach. It might be mentioned here that the default configuration
for convergence of each reconstruction algorithm was utilized in this
work. The convergence criteria were found to be different for different
algorithms. For example, the tolerance levels were 1e−12, 1e−8 and
1e−3 for the 𝑙2, 𝑙1 and TV regularization methods, respectively.

3.2. Experimental methods

3.2.1. Experimental phantoms
The PA signals from three experimental phantoms were collected.

These phantoms were analogous to the numerical phantoms and the
photographs are illustrated in Fig. 3. In the first phantom, three pencil
leads were vertically placed at 0, 4, and 8 mm distances from the center
of the phantom in a gelatin base (8% gelatin in distilled water). It was
held in an acrylic cylinder (see Fig. 3(a)). To make the second and
third phantoms, the multi-disc and vasculature structures were printed
on transparent sheets and glued on the gelatin base as apparent from
Figs. 3(b) and (c), respectively.

3.2.2. Experimental setup
A block diagram of the experimental setup for the PAT imaging is

displayed in Fig. 4. A Q-switched Nd:YAG pulsed laser (NT352C-10-
SH-H, Ekspla) emitting 532 nm wavelength was utilized to shine the
samples. The duration of the light pulses was 6 ns and the repetition
rate was 10 Hz. The energy per pulse was measured to be nearly 13.7
6

mJ/cm2. Thus, the fluence was well under the ANSI safety limit (Amer-
ican National Standards Institute, 2022). The laser beam was guided
through three right-angle uncoated prisms (P1, P2, and P3 in Fig. 4) and
one uncoated plano-concave lens (diffuser) to fall on the sample. The
PA signals were measured by a single-element ultrasonic transducer
with a center frequency of 2.25 MHz, a fractional bandwidth of 70%
and a diameter of 10 mm (V325-SU, Panametric). The detected signals
were amplified with 50 dB gain using a pulser/receiver (DPR300, JSR
Ultrasonics). Thereafter, these signals were stored via a data acquisition
card at a sampling frequency of 25 MHz (PCIe-9852, ADLINK). The
scanning radius was approximately 24.4 mm. The speed of revolution
of the ultrasonic transducer was set to 0.5 degree/s. The customized
scanning system was manufactured by Holmarc, India.

3.2.3. Image formation
The pressure data at 100 detector locations were stacked in the

P matrix (long column vector). The PA signal for each detector po-
sition was obtained by averaging 20 radio frequency lines around
that location. The same A matrix built for the numerical study was
employed for the image reconstruction with the 𝑙2 norm, 𝑙1 norm and
TV minimization schemes. Two sets of images (for PD and FDWD)
were formed and then compared. As we did in the previous case,
the regularization parameter was first estimated through the L-curve
method. After that it was varied over a large range. For each value, an
image was formed and stored. To find out the best image, mean pixel
value (MPV) was computed from a small region for each reconstructed
image. The MPV is defined as,

MPV =
𝑝1 + 𝑝2 + 𝑝3 +⋯ + 𝑝𝑛

𝑛
, (24)

where 𝑝1, 𝑝2, 𝑝3 ... 𝑝𝑛 are the pressure values belonging to that region.
In this work, 36 pixels were involved for this calculation. These regions
are marked by the red boxes in Figs. 8(a), 9(a), and 10(a). The image
which provided the highest MPV was chosen as the best image and the
corresponding numerical value of 𝜆 was taken as the optimal 𝜆.
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Fig. 5. (a) The ground truth of three-point phantom. (b)–(d) Normalized (by the maximum pressure value) reconstructed images utilizing the simulated forward data of a three-point
phantom for the 𝑙2 norm, 𝑙1 norm and TV schemes, respectively, for a point detector (PD). The reconstructed images (e), (f) and (g) are same as that of (b), (c), and (d), respectively,
but for a finite detector with directivity factor (FDWD). Images include color bars quantifying gray levels. The numerical values of 𝜆, 𝜂 and 𝜁 are given at the bottom of the
respective image.
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4. Image reconstruction results

4.1. Computational results

Fig. 5 contains the reconstructed images of the three-point phantom.
Each image is normalized with respect to its maximum pixel value.
A color bar is provided alongside each image to show the numerical
values of the gray levels. The images presented in the first row have
been generated by assuming the transducers as the PDs. The images
in the second row have been formed for the detector having a finite
aperture (FDWD case). The outputs of the 𝑙2 norm, 𝑙1 norm and TV
methods are inserted in the second, third and fourth columns of Fig. 5,
respectively. The optimum value of the regularization parameter for a
reconstruction approach is given at the bottom of the corresponding
image. This value was chosen heuristically as explained earlier. Visu-
ally, the reconstructed images for the FDWD protocol are much better
when compared to those of the PD technique. The numerical values of
the quantitative metrics are given in Table 1 (rows 3 to 6). In the case
of PD, significant blurring can be noticed in the peripheral region of
the three-point phantom. Note that a point has become an arc. This is
most prominently visible for the outermost point with respect to the
scanning/imaging center. Therefore, the tangential resolution degrades
as we move radially from the scanning/imaging center. In the case of
FDWD, this degradation has been mitigated significantly. Though small
blurring can be observed in Fig. 5(e), it is almost absent in Fig. 5(f)
and (g). The numerical values of the metrics in Table 1 are not fully
consistent with this observation. For example, numerical values become
comparable for the first reconstruction method (see rows 3 to 6 and
columns 3 and 4 in Table 1). Moreover, they demonstrate the opposite
trend for the second and third methods (e.g., PCC and CNR values for
the FDWD are smaller than those of the PD; see rows 4 and 5 and
columns 5 to 8 of Table 1). The tangential resolution degradation can
be quantified using the arc length metric (see row 3 of Table 2). The
pixels with gray values above 0.1 in the normalized images were taken
into account while calculating the arc length of a test shape [marked
by an arrow in Fig. 5(a)]. The values are consistent with the visual
interpretation of the images as the improvement can be seen in the
tangential resolution (reduced arc length) for the FDWD scheme.

Similarly, the reconstructed images of the multi-disc phantom are
displayed in Fig. 6. As described above, color bar is attached to each
image. The quantitative estimation of the metrics are presented in
Table 1 (rows 7 to 10). It can be seen from Figs. 6 (b)–(d) that
the circular shapes are converted into elliptical shapes. Additionally,
the black regions are surrounded by white rings. These distortions
7

g

Table 1
Image quality metrics estimated from the simulated images.

Phantom Metrics 𝑙2 norm 𝑙1 norm TV

PD FDWD PD FDWD PD FDWD

Three-point

RMSE 0.029 0.027 0.028 0.038 0.024 0.027
PCC 0.51 0.49 0.55 0.41 0.63 0.54
CNR 39.13 36.76 43.52 29.52 52.35 42.18
SSIM 0.95 0.98 0.98 0.98 0.99 0.99

Multi-disc

RMSE 0.133 0.162 0.110 0.163 0.145 0.141
PCC 0.80 0.60 0.88 0.66 0.75 0.74
CNR 13.12 7.45 18.81 8.85 11.31 11.05
SSIM 0.79 0.52 0.89 0.82 0.83 0.76

Vasculature

RMSE 0.276 0.217 0.252 0.221 0.252 0.166
PCC 0.57 0.82 0.66 0.85 0.67 0.92
CNR 4.29 9.03 5.46 10.11 5.63 14.78
SSIM 0.39 0.67 0.48 0.75 0.54 0.89

re almost completely removed when the FDWD method works in
onjunction with the first two model based algorithms [see Figs. 6(e)
nd (f)]. The TV scheme partially eliminates these distortions [see
ig. 6(g)]. Therefore, it is clear that the FDWD technique in general
rovides a better map of the initial pressure distribution for this phan-
om compared to the PD approach. However, the estimated numerical
alues of the image quality metrics in Table 1 demonstrate that the PD
rocedure works better than the FDWD process and thus contradicts the
isual finding. It seems that these global parameters are not properly
eflecting the local improvements. In order to accurately quantify visual
istortions, the aspect ratio parameter was calculated for a PA source
denoted by an arrow in Fig. 6(a)]. For this analysis, only pixels
xhibiting normalized pressure values exceeding 0.1 were taken into
ccount along both the lateral (major axis) and axial (minor axis)
irections. The aspect ratio was computed as the ratio of the major axis
o the minor axis. It is clear from row 4 of Table 2 that the aspect ratio
or each PD image retains higher value whereas that of FDWD method
s close to 1, proving that shapes are better reconstructed in the FDWD
cheme compared to the PD procedure.

The reconstructed images of the vasculature phantom are pasted in
ig. 7. The numerical values of gray shades can be estimated from the
ssociated color bar. Table 1 (rows 11 to 14) elaborates the numerical
alues of the image quality parameters for this phantom. The vascular
tructure is reproduced well in the central part of the imaging region for
ll reconstruction algorithms for the PD protocol [see Figs. 7(b)–(d)].
evertheless, the shape is not restored properly in the peripheral re-
ion. Figs. 7(e)–(g) show that accurate reproduction of the structure is
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Fig. 6. Ground truth and normalized reconstructed images same as that of Fig. 5 but for a multi-disc phantom.
Fig. 7. Demonstration of the ground truth and reconstructed images (normalized) same as Fig. 5 but for a vasculature phantom.
Table 2
Computed values of arc length and aspect ratio for the three-point and multi-disc phantoms.

Phantom Metrics 𝑙2 norm 𝑙1 norm TV

PD FDWD PD FDWD PD FDWD

Simulation Three-point Arc length (mm) 1.8 1.0 1.8 1.0 1.8 1.0
Multi-disc Aspect ratio 1.83 1.12 1.62 1.0 1.86 1.12

Experiment Three-point Arc length (mm) 2.8 1.2 2.4 1.4 2.4 1.4
Multi-disc Aspect ratio 1.22 1.00 1.08 1.00 1.36 0.91
possible when the effect of directivity is incorporated within the system
matrix (i.e., FDWD method). The RMSE is less for the latter method
compared to the former scheme as evident from Table 1 (compare
columns 3 and 4 of row 11). The variation of other parameters is also in
accordance with this observation (PCC, CNR and SSIM values increase
as the reconstruction approach is changed from PD to FDWD; columns
3 and 4 of rows 12, 13, 14). Among, the three reconstruction strategies,
𝑙1 norm and TV methods are better than the 𝑙2 norm technique.

4.2. Experimental results

The reconstructed images of the experimental phantoms shown in
Fig. 3 or 8(a) have been generated by the PD and FDWD schemes
employing the reconstruction methods stated above. The normalized
reconstructed images for the pencil-lead phantom are provided in Figs.
8(b)–(g). A color bar is included next to each image to visually depict
the numerical values of different gray levels. Figs. 8(b)–(d) correspond
8

to the PD method and Figs. 8(e)–(g) belong to the FDWD protocol. The
respective images for 𝑙2 norm, 𝑙1 norm and TV methods are arranged
in the second, third and fourth columns, respectively. The numerical
values of 𝜆, 𝜂 and 𝜁 parameters are included at the bottom of the
respective images. The region marked by the red box has been used
for calculating the MPV [see Fig. 8(b)]. Figs. 8(b)–(d) show that the
shape of the tips of the first two pencil leads (from the center) are
reproduced well. However, the tip of the farthest pencil lead elongates
in the tangential direction which is a signature of degradation of the
tangential resolution. The shapes of the tips are much better restored
in Figs. 8(e)–(g). This is estimated by quantifying the arc length as
described previously. The 4th row of Table 2 demonstrates that the arc
length is substantially reduced in the FDWD method compared to its
counterpart. The noise level in the peripheral regions of Figs. 8(e)–(g)
is slightly higher than that of Figs. 8(b)–(d). Therefore, improved PAT
imaging is possible by the FDWD method (without deterioration of the
tangential resolution).
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Fig. 8. (a) Photograph of a three-pencil-lead phantom. (b)–(d) Reconstructed images based on the measured PA signals of a three-pencil-lead phantom (normalized by the maximum
pressure value) for the 𝑙2 norm, 𝑙1 norm and TV techniques, respectively, in the case of the PD scheme. The reconstructed images (e)–(g) are same as (b)–(d) but for the FDWD
case. The quantitative values of gray shades can be found from the color bar for each image. The numerical values of 𝜆, 𝜂 and 𝜁 are pasted below the respective images. The red
box in (b) is the region of interest to compute MPV for this phantom.

Fig. 9. (a) Photograph of a printed multi-disc phantom. Normalized reconstructed images are arranged in the same manner as of Fig. 8 but for a printed multi-disc phantom.
Comparison of regions pointed by the arrows in a pair of images [(b) and (e); (c) and (f); (d) and (g)].

Fig. 10. (a) Photograph of a printed vasculature phantom. Display of the reconstructed images (normalized) similar to Fig. 8 but for a printed vasculature phantom. Comparison
of sectors marked by the arrows in a pair of images [(b) and (e); (c) and (f); (d) and (g)].
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The best images of the multi-disc phantom are portrayed in Fig. 9
(including color bars). Here also, the shapes of the PA sources are
better reproduced in the FDWD scheme than the PD approach. The
aspect ratio of a test object [indicated by an arrow in Fig. 9(a)] is
computed to be close to 1 for the FDWD algorithm, however, that of
the PD procedure deviates much from 1 (see 5th row of Table 2). Some
unwanted shades prominently arise in the PD images but they appear
faintly in the FDWD images [compare the regions pointed by the arrows
in Figs. 9(b) and (e); Figs. 9(c) and (f); Figs. 9(d) and (g)]. The same
observation can also be made for the vasculature phantom as displayed
in Fig. 10. Color bars are incorporated for quantitative estimation of
gray levels. The FDWD method significantly removes image blurring
and artifacts. The corresponding regions in the images are marked by
the arrows [compare Figs. 10(b) and (e); Figs. 10(c) and (f); Figs. 10(d)
and (g)]. However, the contrast level of the vascular branches in the
FDWD images is on the lower side with respect to the PD images.

5. Discussion and conclusions

In this work, both computational and experimental studies are
carried out to evaluate the effect of sensor directivity on PAT imaging.
As mentioned above, a similar problem was also dealt with previously
and reported in Wang et al. (2010). To generate the blood vessel
network phantom, we used a popular Monte Carlo algorithm called
the random sequential adsorption technique. This is a very simple
algorithm and works well when the packing fraction is low (up to 0.5).
It may not converge at higher concentrations of particles. The reason
behind this is that valid (or accepted) locations of solid spheres become
fixed and minor adjustments of positions are not possible resisting
compact packing of spheres. This issue can be resolved by applying
the Metropolis algorithm. In this algorithm, the positions of all the
spheres are refreshed sequentially to attain the minimum energy state
of the system. Consequently, dense packing is possible. Construction
of a tissue realization appears to be very fast (≈ 2 min) exploiting the
Monte Carlo method.

The PA signals emitted by the individual spherical absorbers can be
easily evaluated by utilizing the exact or approximate method (Saha,
2021; Berryman, 1983). The physical properties (e.g., acoustic inhomo-
geneity, size and shape dispersity) of each absorber can be taken into
account at this stage. The frequency dependent acoustic attenuation
of the extracellular matrix can also be included in this approach. The
discrete particle approach allows to elegantly couple the PA signal
emitted by an absorber with the SIRF of the detector (by which the
measurement is performed). Accordingly, the resultant PA signal from
the tissue has been obtained by linearly summing the contributions
from the individual sources. Therefore, forward data simulation retain-
ing the impact of a realistic transducer becomes straightforward and
very fast. Herein, the transducer has been assumed as a plane piston
and mounted on a rigid baffle. The Field II toolbox has been utilized to
calculate the SIRF of such an ultrasonic sensor. It is a robust toolbox and
enables us to calculate SIRF for various types of transducers — plane
piston mounted on a rigid/soft baffle, focused transducer, apodized
transducer, array transducer, etc.

A single element, unfocused transducer changes the width and
magnitude of the acoustic pulse depending upon its origin in space.
Therefore, these features remain embedded within the forward data if a
transducer with a finite aperture is used for signal collection. The pulse
broadening results in image blurring in the PAT modality if it is not
compensated appropriately. In this work, we build the system matrix
by including the response of a realistic transducer (FDWD approach).
It is intuitively expected that the effect of sensor directivity would be
canceled out during the matrix inversion step providing PAT imaging
devoid of sensor directivity effect. A point detector is assumed to
respond omni-directionally to the incoming acoustic signals. It also
does not alter the width of each signal (widths of the input and output
10

pulses are the same). Therefore, the corresponding system matrix does
not include pulse elongation. Hence, the PD approach cannot com-
pensate for pulse stretching present in the forward data during image
reconstruction and therefore, produces blurry images.

This study employs 𝑙2 norm-, 𝑙1 norm- and TV- based regularization
ethods for PAT image generation (Prakash et al., 2018). As pointed

ut earlier, a closed form analytical solution of Eq. (12) can be de-
ived under the framework of 𝑙2 norm based Tikhonov regularization.
evertheless, this is not possible for the remaining methods and hence,
umerical solutions may be obtained. Many different third party soft-
ares are available freely and those can be deployed for obtaining

olutions exploring these frameworks. The regularization toolbox is
sed in the present work for the first algorithm whereas FISTA and
VAL toolboxes are utilized for the second and third protocols, respec-
ively. Note that another toolbox known as the SALSA has also been
tilized for PAT imaging (Prakash et al., 2018). All these toolboxes
ssentially involve variants of the Lagrange multiplier method for solv-
ng constrained optimization problems. Each of these methods desires
o reduce computational complexity and attain accurate solutions as
ast as possible. It may be mentioned here that for the PD scheme,
he execution times in the 𝑙2 norm, 𝑙1 norm and TV procedures were

found to be 251 (including the time required for SVD = 239 s), 54 and
182 seconds, respectively for the same virtual machine. On the other
hand, the same techniques took 268 (SVD time = 257 s), 80 and 159
seconds, respectively for the FDWD approach. These numerical values
depict that the second and third methods execute faster than the first
algorithm. Moreover, the first method is known to penalize edges and
thus may induce over-smoothing effect (sharp boundaries may be lost).
The second and third algorithms do not penalize the edges and thus
boundaries may be restored well in the reconstructed image. Further,
it is seen that the reconstructed images contain streak artifacts, which
arise due to sparse spatial sampling. Dense spatial sampling can remove
such artifacts (Hu et al., 2020, 2022). However, in that case, the size
of the A will become large posing huge computational burden.

In a typical time-domain PA model-matrix, the number of effective
time samples generated by the light-absorbing structures is generally
small. As a result, the A matrix exhibits sparsity, with a very small
number of non-zero entries. Including this aspect, the PA inverse prob-
lem has been successfully addressed using a matrix-free approach.
Ding et al. presented a novel 3D model-based reconstruction method
suitable for PAT imaging systems that utilize detection elements of
arbitrary size and shape. To address the computational complexity and
memory constraints, they developed an efficient implementation of
the iterative inversion process using a graphic processing unit (GPU).
They performed on-the-fly calculations of the model-matrix entries
through a compact look-up table. The need for storing matrices can thus
be avoided making the approach feasible and resource-efficient (Ding
et al., 2020, 2017). We consider the possibility of implementing such
an approach in our future endeavors.

In conclusion, a theoretical model for calculation of the PA signal
from a tissue is presented. It essentially exploits the cellular aspect of
tissue. The PA signals from cells approximated as spheres are computed
using the exact method. Such a signal is convolved with the SIRF of a
finite detector. The convolved signals are linearly summed up to obtain
the resultant signal generated by a tissue. This is called the discrete par-
ticle approach which has been used here to simulate the PA signals from
various numerical phantoms including a blood vessel network. This
theoretical framework is essentially derived by drawing analogy with
the model used to study ultrasonic scattering from tissue. A Monte Carlo
algorithm has been implemented to construct the vasculature phantom
by randomly placing spheres mimicking cells within the vasculature
region. This approach allows to know spatial organization of cells
(i.e., microscopic details) of the vasculature phantom. The simulated
signals are used to form PAT images of the phantoms utilizing three
model matrix inversion methods, namely, 𝑙2 norm based regularization,
𝑙1 norm based regularization and TV minimization procedures. The

model matrix has been built by incorporating the directivity effect of
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a finite detector. Another model matrix has been formed by assuming
finite detector as a point sensor and accordingly, images have been
generated for comparison. Analogous phantom-experiments have been
conducted as well. Both the numerical and experimental results suggest
that much improved PAT imaging is possible when the first type of
model matrix (including directivity effect of finite detector) works in
conjunction with the TV minimization scheme. This combination can
be utilized in practice for faithful image reconstruction of vasculature
structures using PAT.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

All the computational work reported in this paper was performed
on the Central Computing Facility of IIIT Allahabad. This work was
supported in part by the ICMR, India (# 56/2/2020-Hae/BMS) and
DBT, India (# BT/PR44547/MED/32/791/ 2021) grants. We would
like to thank Dr Manish Bhatt for stimulating discussions. The authors
would also like to thank Subhadip, Ujjal, Sudeep and Zartab for their
support during the work.

References

Afonso, M.V., Bioucas-Dias, J.M., Figueiredo, M.A., 2010. An augmented Lagrangian
approach to the constrained optimization formulation of imaging inverse problems.
IEEE Trans. Image Process. 20 (3), 681–695.

American National Standards Institute, 2022. American National Standard for Safe Use
of Lasers. Laser Institute of America.

Araque Caballero, M.A., 2013. Incorporating Sensor Properties in Optoacoustic
Imaging (Doctoral dissertation). Technische Universität München.

Beck, A., Teboulle, M., 2009. A fast iterative shrinkage-thresholding algorithm for linear
inverse problems. SIAM J. Imaging Sci. 2 (1), 183–202.

Berryman, J.G., 1983. Random close packing of hard spheres and disks. Phys. Rev. A
27 (2), 1053.

Bohndiek, S.E., Sasportas, L.S., Machtaler, S., Jokerst, J.V., Hori, S., Gambhir, S.S.,
2015. Photoacoustic tomography detects early vessel regression and normalization
during ovarian tumor response to the antiangiogenic therapy trebananib. J. Nucl.
Med. 56 (12), 1942–1947.

Chowdhury, K.B., Prakash, J., Karlas, A., Jüstel, D., Ntziachristos, V., 2020. A syn-
thetic total impulse response characterization method for correction of hand-held
optoacoustic images. IEEE Trans. Med. Imaging 39 (10), 3218–3230.

Cox, B.T., Treeby, B.E., 2010. Effect of sensor directionality on photoacoustic imaging: a
study using the k-wave toolbox. In: Photons Plus Ultrasound: Imaging and Sensing
2010, Vol. 7564. SPIE, pp. 123–128.

Daubechies, I., Defrise, M., De Mol, C., 2004. An iterative thresholding algorithm for
linear inverse problems with a sparsity constraint. Comm. Pure Appl. Math. J.
Issued Courant Inst. Math. Sci. 57 (11), 1413–1457.

Ding, L., Dean-Ben, X.L., Razansky, D., 2017. Efficient 3-D model-based reconstruction
scheme for arbitrary optoacoustic acquisition geometries. IEEE Trans. Med. Imaging
36 (9), 1858–1867.

Ding, L., Razansky, D., Dean-Ben, X.L., 2020. Model-based reconstruction of large
three-dimensional optoacoustic datasets. IEEE Trans. Med. Imaging 39 (9),
2931–2940.

Goldstein, T., Studer, C., Baraniuk, R., 2014. A field guide to forward–backward
splitting with a FASTA implementation. arXiv preprint arXiv:1411.3406.

González, G., Kolehmainen, V., Seppänen, A., 2017. Isotropic and anisotropic total
variation regularization in electrical impedance tomography. Comput. Math. Appl.
74 (3), 564–576.

Guo, Z., Li, C., Song, L., Wang, L.V., 2010. Compressed sensing in photoacoustic
tomography in vivo. J. Biomed. Opt. 15 (2), 021311-021311.

Han, Y., Tzoumas, S., Nunes, A., Ntziachristos, V., Rosenthal, A., 2015. Sparsity-based
acoustic inversion in cross-sectional multiscale optoacoustic imaging. Med. Phys.
42 (9), 5444–5452.

Hansen, P.C., 2007. Regularization tools version 4.0 for Matlab 7.3. Numer. Algorithms
46, 189–194.
11
Hansen, P.C., O’Leary, D.P., 1993. The use of the L-curve in the regularization of
discrete ill-posed problems. SIAM J. Sci. Comput. 14 (6), 1487–1503.

Hu, P., Li, L., Lin, L., Wang, L.V., 2020. Spatiotemporal antialiasing in photoacoustic
computed tomography. IEEE Trans. Med. Imaging 39 (11), 3535–3547.

Hu, P., Li, L., Wang, L.V., 2022. Location-dependent spatiotemporal antialiasing in
photoacoustic computed tomography. IEEE Trans. Med. Imaging 42 (4), 1210–1224.

Jensen, J.A., Svendsen, N.B., 1992. Calculation of pressure fields from arbitrarily
shaped, apodized, and excited ultrasound transducers. IEEE Trans. Ultrason.
Ferroelectr. Freq. Control 39 (2), 262–267.

Karmakar, S., Hysi, E., Kolios, M.C., Saha, R.K., 2015. Realistic photoacoustic image
simulations of collections of solid spheres using linear array transducer. In: Photons
Plus Ultrasound: Imaging and Sensing 2015, Vol. 9323. SPIE, pp. 493–500.

Kong, Q., Gong, R., Liu, J., Shao, X., 2018. Investigation on reconstruction for frequency
domain photoacoustic imaging via TVAL3 regularization algorithm. IEEE Photonics
J. 10 (5), 1–15.

Li, D., Humayun, L., Vienneau, E., Vu, T., Yao, J., 2021. Seeing through the skin:
Photoacoustic tomography of skin vasculature and beyond. JID Innovations 1 (3),
100039.

Li, M.L., Tseng, Y.C., Cheng, C.C., 2010. Model-based correction of finite aperture effect
in photoacoustic tomography. Opt. Express 18 (25), 26285–26292.

Li, C., Yin, W., Jiang, H., Zhang, Y., 2013. An efficient augmented Lagrangian
method with applications to total variation minimization. Comput. Optim. Appl.
56, 507–530.

Li, L., Zhu, L., Ma, C., Lin, L., Yao, J., Wang, L., Maslov, K., Zhang, R., Chen, W., Shi, J.,
Wang, L.V., 2017. Single-impulse panoramic photoacoustic computed tomography
of small-animal whole-body dynamics at high spatiotemporal resolution. Nat.
Biomed. Eng. 1 (5), 0071.

Lin, L., Hu, P., Shi, J., Appleton, C.M., Maslov, K., Li, L., Zhang, R., Wang, L.V.,
2018. Single-breath-hold photoacoustic computed tomography of the breast. Nature
Commun. 9 (1), 2352.

Lu, T., Wang, Y., Li, J., Prakash, J., Gao, F., Ntziachristos, V., 2020. Full-frequency
correction of spatial impulse response in back-projection scheme using space-variant
filtering for optoacoustic mesoscopy. Photoacoustics 19, 100193.

Lv, X.G., Song, Y.Z., Wang, S.X., Le, J., 2013. Image restoration with a high-order total
variation minimization method. Appl. Math. Model. 37 (16–17), 8210–8224.

Manohar, S., Dantuma, M., 2019. Current and future trends in photoacoustic breast
imaging. Photoacoustics 16, 100134.

Na, S., Zhang, Y., Wang, L.V., 2022. Cross-ray ultrasound tomography and pho-
toacoustic tomography of cerebral hemodynamics in rodents. Adv. Sci. 9 (25),
2201104.

Nandy, S., Mostafa, A., Hagemann, I.S., Powell, M.A., Amidi, E., Robinson, K.,
Mutch, G.M., Siegel, C., Zhu, Q., 2018. Evaluation of ovarian cancer: initial
application of coregistered photoacoustic tomography and US. Radiology 289 (3),
740–747.

Nyayapathi, N., Lim, R., Zhang, H., Zheng, W., Wang, Y., Tiao, M., Oh, K.W., Fan, X.C.,
Bonaccio, E., Takabe, K., Xia, J., 2019. Dual scan mammoscope (DSM)—a new
portable photoacoustic breast imaging system with scanning in craniocaudal plane.
IEEE Trans. Biomed. Eng. 67 (5), 1321–1327.

Paltauf, G., Viator, J.A., Prahl, S.A., Jacques, S.L., 2002. Iterative reconstruction
algorithm for optoacoustic imaging. J. Acoust. Soc. Am. 112 (4), 1536–1544.

Prakash, R., Badal, D., Paul, A., Sonker, D., Saha, R.K., 2020. Photoacoustic signal
simulation using discrete particle approach and its application in tomography. IEEE
Trans. Ultrason. Ferroelectr. Freq. Control 68 (3), 707–717.

Prakash, J., Raju, A.S., Shaw, C.B., Pramanik, M., Yalavarthy, P.K., 2014. Basis pursuit
deconvolution for improving model-based reconstructed images in photoacoustic
tomography. Biomed. Opt. Express 5 (5), 1363–1377.

Prakash, J., Sanny, D., Kalva, S.K., Pramanik, M., Yalavarthy, P.K., 2018. Fractional
regularization to improve photoacoustic tomographic image reconstruction. IEEE
Trans. Med. Imaging 38 (8), 1935–1947.

Pramanik, M., 2014. Improving tangential resolution with a modified delay-and-sum
reconstruction algorithm in photoacoustic and thermoacoustic tomography. J. Opt.
Soc. Am. A 31 (3), 621–627.

Pramanik, M., Ku, G., Wang, L.V., 2009. Tangential resolution improvement in
thermoacoustic and photoacoustic tomography using a negative acoustic lens. J.
Biomed. Opt. 14 (2), 024028-024028.

Ramani, S., Liu, Z., Rosen, J., Nielsen, J.F., Fessler, J.A., 2012. Regularization parameter
selection for nonlinear iterative image restoration and MRI reconstruction using
GCV and SURE-based methods. IEEE Trans. Image Process. 21 (8), 3659–3672.

Roitner, H., Haltmeier, M., Nuster, R., O’Leary, D.P., Berer, T., Paltauf, G., Grün, H.,
Burgholzer, P., 2014. Deblurring algorithms accounting for the finite detector size
in photoacoustic tomography. J. Biomed. Opt. 19 (5), 056011-056011.

Rosenthal, A., Razansky, D., Ntziachristos, V., 2010. Fast semi-analytical model-based
acoustic inversion for quantitative optoacoustic tomography. IEEE Trans. Med.
Imaging 29 (6), 1275–1285.

Saha, R.K., 2021. Solving time-independent inhomogeneous optoacoustic wave equation
numerically with a modified green’s function approach. J. Acoust. Soc. Am. 149
(6), 4039–4048.

Sangha, G.S., Hu, B., Li, G., Fox, S.E., Sholl, A.B., Brown, J.Q., Goergen, C.J., 2022.
Assessment of photoacoustic tomography contrast for breast tissue imaging using
3D correlative virtual histology. Sci. Rep. 12 (1), 2532.

http://refhub.elsevier.com/S2666-9501(23)00180-3/sb1
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb1
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb1
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb1
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb1
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb2
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb2
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb2
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb3
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb3
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb3
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb4
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb4
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb4
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb5
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb5
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb5
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb6
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb6
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb6
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb6
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb6
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb6
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb6
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb7
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb7
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb7
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb7
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb7
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb8
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb8
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb8
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb8
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb8
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb9
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb9
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb9
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb9
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb9
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb10
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb10
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb10
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb10
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb10
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb11
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb11
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb11
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb11
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb11
http://arxiv.org/abs/1411.3406
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb13
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb13
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb13
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb13
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb13
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb14
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb14
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb14
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb15
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb15
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb15
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb15
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb15
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb16
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb16
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb16
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb17
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb17
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb17
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb18
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb18
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb18
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb19
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb19
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb19
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb20
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb20
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb20
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb20
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb20
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb21
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb21
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb21
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb21
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb21
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb22
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb22
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb22
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb22
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb22
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb23
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb23
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb23
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb23
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb23
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb24
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb24
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb24
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb25
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb25
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb25
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb25
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb25
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb26
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb26
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb26
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb26
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb26
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb26
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb26
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb27
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb27
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb27
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb27
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb27
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb28
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb28
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb28
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb28
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb28
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb29
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb29
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb29
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb30
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb30
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb30
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb31
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb31
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb31
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb31
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb31
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb32
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb32
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb32
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb32
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb32
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb32
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb32
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb33
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb33
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb33
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb33
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb33
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb33
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb33
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb34
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb34
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb34
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb35
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb35
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb35
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb35
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb35
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb36
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb36
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb36
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb36
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb36
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb37
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb37
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb37
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb37
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb37
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb38
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb38
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb38
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb38
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb38
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb39
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb39
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb39
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb39
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb39
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb40
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb40
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb40
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb40
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb40
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb41
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb41
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb41
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb41
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb41
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb42
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb42
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb42
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb42
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb42
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb43
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb43
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb43
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb43
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb43
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb44
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb44
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb44
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb44
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb44


Results in Optics 13 (2023) 100528P. Warbal and R.K. Saha
Schoonover, R.W., Wang, L.V., Anastasio, M.A., 2012. Numerical investigation of the
effects of shear waves in transcranial photoacoustic tomography with a planar
geometry. J. Biomed. Opt. 17 (6), 061215-061215.

Seeger, M., Soliman, D., Aguirre, J., Diot, G., Wierzbowski, J., Ntziachristos, V., 2020.
Pushing the boundaries of optoacoustic microscopy by total impulse response
characterization. Nat. Commun. 11 (1), 2910.

Shung, K.K., Thieme, G.A., 1992. Ultrasonic Scattering in Biological Tissues. CRC Press.
Song, X., Pogue, B.W., Jiang, S., Doyley, M.M., Dehghani, H., Tosteson, T.D.,

Paulsen, K.D., 2004. Automated region detection based on the contrast-to-noise
ratio in near-infrared tomography. Appl. Opt. 43 (5), 1053–1062.

Szabo, T.L., 2004. Diagnostic Ultrasound Imaging: Inside Out. Academic Press.
Thung, K.H., Raveendran, P., 2009. A survey of image quality measures. In: 2009

International Conference for Technical Postgraduates. TECHPOS, IEEE, pp. 1–4.
Treeby, B.E., Cox, B.T., 2009. Fast tissue-realistic models of photoacoustic wave

propagation for homogeneous attenuating media. In: Photons Plus Ultrasound:
Imaging and Sensing 2009, Vol. 7177. SPIE, pp. 311–320.

Treeby, B.E., Cox, B.T., 2010. k-Wave: MATLAB toolbox for the simulation
and reconstruction of photoacoustic wave fields. J. Biomed. Opt. 15 (2),
021314-021314.

Wagner, R.F., Insana, M.F., Brown, D.G., Hall, T., 1987. Describing small-scale structure
in random media using pulse-echo ultrasound. J. Opt. Soc. Am. A 4, 910–922.

Wang, L.V. (Ed.), 2017. Photoacoustic Imaging and Spectroscopy. CRC press.
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P., 2004a. Image quality assessment:

from error visibility to structural similarity. IEEE Trans. Image Process. 13 (4),
600–612.

Wang, K., Ermilov, S.A., Su, R., Brecht, H.P., Oraevsky, A.A., Anastasio, M.A., 2010. An
imaging model incorporating ultrasonic transducer properties for three-dimensional
optoacoustic tomography. IEEE Trans. Med. Imaging 30 (2), 203–214.
12
Wang, Y., Xing, D., Zeng, Y., Chen, Q., 2004b. Photoacoustic imaging with
deconvolution algorithm. Phys. Med. Biol. 49 (14), 3117.

Warbal, P., Pramanik, M., Saha, R.K., 2019. Impact of sensor apodization on the
tangential resolution in photoacoustic tomography. J. Opt. Soc. Am. A 36 (2),
245–252.

Warbal, P., Saha, R.K., 2022a. In silico evaluation of the effect of sensor directivity on
photoacoustic tomography imaging. Optik 252, 168305.

Warbal, P., Saha, R.K., 2022b. Performance comparison of commonly used photoa-
coustic tomography reconstruction algorithms under various blurring conditions. J.
Modern Opt. 69 (9), 487–501.

Wood, S.N., 2004. Stable and efficient multiple smoothing parameter estimation for
generalized additive models. J. Amer. Statist. Assoc. 99 (467), 673–686.

Xia, J., Wang, L.V., 2012. Photoacoustic tomography of the brain. In: Optical Methods
and Instrumentation in Brain Imaging and Therapy. Springer New York, New York,
NY, pp. 137–156.

Xu, M., Wang, L.V., 2005. Universal back-projection algorithm for photoacoustic
computed tomography. Phys. Rev. E 71 (1), 016706.

Yang, X., Li, M.L., Wang, L.V., 2007. Ring-based ultrasonic virtual point detector with
applications to photoacoustic tomography. Appl. Phys. Lett. 90 (25).

Yao, L., Jiang, H., 2011. Enhancing finite element-based photoacoustic tomography
using total variation minimization. Appl. Opt. 50 (25), 5031–5041.

Yao, J., Wang, L.V., 2018. Recent progress in photoacoustic molecular imaging. Curr.
Opin. Chem. Biol. 45, 104–112.

Yao, J., Wang, L.V., 2021. Perspective on fast-evolving photoacoustic tomography. J.
Biomed. Opt. 26 (6), 060602-060602.

http://refhub.elsevier.com/S2666-9501(23)00180-3/sb45
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb45
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb45
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb45
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb45
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb46
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb46
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb46
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb46
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb46
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb47
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb48
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb48
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb48
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb48
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb48
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb49
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb50
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb50
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb50
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb51
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb51
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb51
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb51
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb51
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb52
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb52
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb52
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb52
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb52
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb53
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb53
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb53
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb54
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb55
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb55
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb55
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb55
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb55
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb56
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb56
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb56
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb56
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb56
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb57
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb57
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb57
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb58
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb58
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb58
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb58
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb58
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb59
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb59
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb59
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb60
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb60
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb60
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb60
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb60
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb61
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb61
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb61
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb62
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb62
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb62
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb62
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb62
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb63
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb63
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb63
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb64
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb64
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb64
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb65
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb65
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb65
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb66
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb66
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb66
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb67
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb67
http://refhub.elsevier.com/S2666-9501(23)00180-3/sb67

	Photoacoustic tomography with a model-based approach involving realistic detector properties
	Introduction
	Mathematical ingredients
	Forward problem
	Calculation of PA field for a spherical absorber
	Computing PA signal for a finite detector
	Estimation of band-limited signal

	Inverse problem
	l2 norm based solution
	l1 norm based solution
	TV minimization based solution

	Image quality metrics

	Computational and experimental methods
	Computational methods
	Numerical phantoms
	Generation of forward data
	Formation of system matrix
	Reconstruction of PAT images

	Experimental methods
	Experimental phantoms
	Experimental setup
	Image formation


	Image reconstruction results
	Computational results
	Experimental results

	Discussion and Conclusions
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


