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Abstract
Optoacoustic (OA) spectral properties of various sources mimicking normal and pathological red blood cells (RBCs) have 
been studied. The shapes of normal RBC and cells suffering from stomatocytosis (denoted by ST) were generated using 
mathematical models. However, the shape corresponding to the cells affected by echinocytosis (referred to as ET) was con-
structed by uniformly distributing half prolate spheroids on a central spherical object. The OA field emitted by an acousti-
cally inhomogeneous source was calculated for a wide acoustic frequency bandwidth (1–1500 MHz with an increment 5 
MHz) by solving the time-independent wave equation employing a modified Green’s function approach. The OA spectra 
averaged over 200 orientations for normal RBC and STs demonstrate similar features (one minimum occurring nearly at 906 
MHz). The same graphs for ETs are remarkably different from that of normal RBC and exhibit better match with that of a 
spherical RBC (first minimum appearing at around 425 MHz). The spectral features of ETs above 425 MHz may enable us 
to differentiate diseased cells (echinocytosis) from normal RBCs.

Keywords Optoacoustics · Photoacoustics · Inhomogeneous wave equation · Green’s function · Modified Green’s function · 
Normal erythrocyte · Stomatocyte · Echinocyte

Introduction

In 1880, Alexander Graham Bell discovered the optoa-
coustic/photoacoustic (OA/PA) effect—-generation of 
acoustic waves due to absorption of light (Wang 2017). It 
has attracted tremendous attention over the last three dec-
ades because it has the potential to evolve as a biomedical 
imaging/characterization modality (Wang and Yao 2016; 
Das et al. 2021). It combines the advantages of optics and 
acoustics. The OA tomography technology can generate 
images of small animal organs. The OA microscopy tech-
nique can provide images of cells, narrow vasculatures, etc. 
Apart from imaging studies, the OA signals from circulating 
tumor cells and malaria infected cells in blood stream have 
been captured using transducers operating at 2.25–35 MHz 

(Galanzha et al. 2013; Juratli et al. 2016). The OA signals 
from single red blood cells (RBCs) have also been measured 
using ultra high frequency transducers (few hundred MHz to 
GHz) and subsequently, spectral features have been studied 
(Strohm et al. 2013a, b). It has been concluded that spectral 
patterns depend upon the size and shape of RBCs. In other 
words, the morphological parameters of the OA source may 
be extracted from the frequency domain properties.

It is worthy to mention here that RBCs under normal 
physiological condition retain the biconcave shape (Bessis 
1973; Da Costa et al. 2013; He Li et al. 2018; Gerald Lim 
et al. 2002). The surface to volume ratio for this shape is 
very high. Further, RBCs do not have nucleus and hence 
they are astonishingly deformable allowing them to travel 
through microchannels (whose diameters are less than the 
diameter of a typical RBC). High surface to volume ratio and 
deformability are the two unique features of RBCs which 
help them to perform physiological activities efficiently. 
Some hereditary disorders make RBCs stiff and deformed 
inhibiting their regular functions to perform. Stomatocyto-
sis (ST) and echinocytosis (ET) are such disorders. In case 
of ST, RBCs take cup shape. In case of ET, RBCs appear 

 * Ratan K. Saha 
 ratank.saha@iiita.ac.in

1 Department of Applied Sciences, Indian Institute 
of Information Technology Allahabad, Jhalwa, 
Allahabad 211015, India

http://orcid.org/0000-0001-7274-6707
http://crossmark.crossref.org/dialog/?doi=10.1007/s00249-021-01579-5&domain=pdf


68 European Biophysics Journal (2022) 51:67–76

1 3

as crenated shapes. These shapes are further divided into 
three classes referred to as I, II and III. Several protuber-
ances/spicules (number varying from 20 to 50) are found to 
be uniformly distributed on a central spherical body in ET 
III (Ranjan Mukhopadhyay et al. 2002). Understanding of 
these shapes and how they transform have served as a clas-
sic problem in cell biology (Ranjan Mukhopadhyay et al. 
2002). Detection and classification of abnormal RBCs are 
also of great clinical importance. The OA technique may be 
developed for fast and automated characterization of patho-
logical RBCs.

The OA fields for normal and altered RBCs have been 
calculated by solving the Helmholtz equation numerically 
via the Green’s function method (Saha et al. 2017; Kau-
shik et al. 2019). Further, the size and shape information 
of the source have also been extracted from the OA spec-
trum (Kaushik et al. 2020, 2021). In these studies, RBCs 
are assumed to be acoustically homogeneous with respect 
to the ambient medium. However, this assumption is not 
true because sound-speed inside RBCs differs from that of 
saline water by ≈ 10 %. The term arising from sound-speed 
mismatch (between the source and the ambient medium) 
can be easily incorporated within the Helmholtz equation. 
Nevertheless, it is not trivial to obtain a solution to that equa-
tion. The Born series methods have been implemented to 
solve such an equation (Kaushik et al. 2020; Saha 2020). 
The traditional Born series method can provide converging 
solution when size of the source and sound-speed mismatch 
are small. The convergent Born series technique can work 
faithfully for arbitrarily large media. The Born series meth-
ods are computationally expensive and that is why recently a 
modified Green’s function method has been utilized to solve 
the OA wave equation for an acoustically inhomogeneous 
source (Saha 2021). The performance of this scheme has 
been extensively investigated (Saha 2021).

The objective of this work is to study the OA spectra gen-
erated by various acoustically inhomogeneous objects lying 
in the cellular regime when computed employing the modi-
fied Green’s function method. This approach provides an 
integral solution to the OA wave equation. The Monte Carlo 
method was employed to compute the integration numeri-
cally to evaluate frequency dependent pressure fields emitted 
by a series of OA sources imitating biological targets (i.e., 
human erythrocytes, STs and ETs). The contours of erythro-
cytes and STs were generated using mathematical equations 
whereas a shape mimicking ET was constructed by placing 
half prolate spheroids on the surface of a sphere. The OA 
spectra averaged over 200 orientations for erythrocytes and 
STs look identical but those of ETs appear significantly dif-
ferent. These findings suggest that OA technique may be 
explored for differentiating ETs from normal RBC.

The layout of the paper is as follows. In the next section, 
we describe how to solve the time-independent OA equation 

using the modified Green’s function method and illustrate 
the mathematical models to simulate the shapes for a series 
of cells (normal and pathological RBCs). The construction 
of shapes of these cells and computation of OA spectra are 
detailed in section 3. The simulation results are presented 
in section 4. Various aspects of this study are elaborated in 
section 5. This section also includes a brief summary of the 
work.

Governing equations

OA wave equation and its solution

Consider an optically transparent fluid medium enclosing 
a light absorbing region, which is uniformly illuminated 
by a laser beam. Thermo-opto-mechanical properties of 
this region are spatially invariant. The sound-speed of this 
region differs from that of the surrounding medium. The 
corresponding time-independent OA wave equation under 
thermal and stress confinement conditions is given by (Die-
bold et al. 1991), 

where � is the optical absorption coefficient, � indicates the 
isobaric thermal expansion coefficient and CP specifies the 
specific heat for the absorbing region; Here, ks and kf  refer to 
the wave numbers inside and outside the OA source, respec-
tively. The notations � and I0 are used to denote the modula-
tion frequency and the intensity of the incident laser beam, 
respectively. Fig. 1 displays a representative diagram in 2D.

The OA wave equations as given in Eq. (1) after rear-
rangement of terms can be combined as (Kaushik et al. 
2020; Saha 2020, 2021),

where

and

where S(�) and V(�) denote the source term and the scat-
tering potential, respectively. Here, we consider a spherical 

(1a)∇2�(�) + k2
s
�(�) =

i��I0�

CP

, within the source,

(1b)
∇2�(�) + k2

f
�(�) = 0, in the surrounding medium,

(2)∇2�(�) + k2
f
�(�) = −S(�) − V(�)�(�),
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f
, if |�| ≤ a
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source with radius a. Similar equations frequently appear in 
physics modeling acoustical, optical and potential scatter-
ing problems (Philip 1968; Ishimaru 2002; Leonard 1969). 
These equations can be solved using the perturbation method 
(Leonard 1969). This method obtains an approximate solu-
tion of a complex equation starting from a simple/known 
solution. This procedure provides sufficient insight about 
how the system depends upon various parameters.

The solution to Eq. (2) can also be obtained using the 
Green’s function method. Note that the free space Green’s 
function satisfies (Morse and Feshbach 1953),

where � indicates the Dirac delta function; �0 and � are the 
source and the field points, respectively. The functional form 
of g(�|�0) can be derived as (Morse and Feshbach 1953),

The solution to Eq. (2), thus, becomes,

where Vvol is the volume of the source. Deriving a solution 
�(�) is not trivial as evident from Eq. (7). This is because 
the field inside the source has to be given as an input to Eq. 
(7) to obtain the pressure field outside the OA source. In 
reality, it is not known a priori. The standard procedure is 
to begin with an approximate field and a reliable solution is 
obtained by recursively expanding Eq. (7). This is known 
as the Born series method (Kaushik et al. 2020; Saha 2020, 
2021). Though the Born series methods work well for acous-
tically inhomogeneous source but they are computationally 
expensive.

It has been recently shown that a reliable estimate of 
the OA field for an acoustically inhomogeneous source 
can be deduced by only considering the first source term 
(neglecting the scattering potential) and by modifying the 

(5)∇2g(�|�0) + k2
f
g(�|�0) = −�(� − �0),

(6)g(�|�0) =
eikf |�−�0|

4�|� − �0|
.

(7)�(�) =
∫Vvol

g(�|�0)[S(�0) + V(�0)�(�0)]d
3
�0,

free space Green’s function (in the far field) in the follow-
ing manner (Saha 2021; Chu and Ye 1999),

Chu et al. utilized this modified Green’s function in the con-
text of underwater acoustics for studying scattering of acous-
tic waves by Zooplankton (Chu and Ye 1999). The acoustical 
property of the inhomogeneity is included within the Green’s 
function in this scheme and thus can efficiently compensate 
the phase mismatch arising due to sound-speed mismatch 
facilitating accurate estimation of backscatter spectrum (Chu 
and Ye 1999; Sharma and Saha 2009). Therefore, for this 
Green’s function, one calculates,

where M(�) is the amplitude of the out going spherical wave 
and it is given by,

For a spherical source, one finds,

In this work, Eq. (10) has been computed to predict the OA 
fields generated by normal and pathological RBCs.

It may be mentioned here that the exact analytical solu-
tions of Eq. (1) can be readily derived for regular shapes 
(e.g., layer, infinite cylinder, sphere). It is accomplished 
by solving these equations inside and outside the source 
and then by matching the pressure and normal component 
of the particle velocity at the boundary. For example, the 
solution for a spherical source becomes,

(8)g(�|�0) ≈
eikf r

4�r
e−i�s⋅�0 .

(9)
�mgf (�) ≈ −

∫Vvol

i��Io�
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r
,

(10)M(�) = −
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3
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k3
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eikf r

r
.

Fig. 1  2D view of the source–
detector arrangement.
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where q̂ = ksa , v̂ = vs∕vf  and �̂� = 𝜌s∕𝜌f  ; �s and vs are the 
density and sound-speed inside the source, respectively. The 
same quantities for the ambient fluid medium are denoted 
by �f  and vf  , respectively. Eq. (12) has also been evaluated 
in this work to compare the performance of the modified 
Green’s function approach. Note that the Green’s function 
method approximately reproduces (apart from some phase 
factors) the exact solution for a spherical source [compare 
Eqs. (11) and (12)].

Modeling of shapes of normal and pathological cells

Muñoz San Martín et al. developed parametric equations using 
the Jacobi elliptic functions that can suitably model various 
shapes of normal and pathological RBCs (belonging to ST) of 
constant volume (Muñoz San Martín et al. 2006). These equa-
tions are capable to produce continuous deformations from 
the normal to the altered shapes. However, the notations and 
also the equations are not easy to understand. Therefore, the 
corresponding equations in the Cartesian coordinate system 
were derived subsequently (Larkin and Kuchel 2010). This 
group also proposed a simple method for generating the shapes 
belonging to ET mathematically. The models are described 
below in brief.

Modeling of normal RBC

Equation for normal RBC can be given by, Larkin and Kuchel 
(2010)

where x, y and z are lying on the surface of RBC. The coef-
ficients A, B, C can be obtained as,

(12)

𝜓ex(�)

=
i𝜇𝛽I0𝜔a

3

CP

[sin(q̂) − q̂ cos(q̂)]

q̂3[(1 − �̂�) sin(q̂)∕q̂ − cos(q̂) + i�̂�v̂ sin(q̂)]

eikf (r−a)

r
,

(13)(x2 + y2)2 + A(x2 + y2) + Bz2 + C = 0,

A = (1 − 2m)d2∕4m,

B = (1 − m)d4∕16t2m,

C = − (1 − m)d4∕16m,

where d and 2t are the diameter and dimple thickness of 
the RBC, respectively; the parameter m ∈ [0, 1] controls 
the maximum thickness of the cell. A schematic diagram is 
shown in Fig. 2a.

Modeling of ST

Unlike normal RBC, two equations are required to describe 
the contours of STs. These equations are given below, 

The coefficients D, E, F, G and H are related to the mor-
phological parameters as,

Similarly, the coefficients I, J, K and L can be found to be,

The maximum heights of the cell in the two halves are gov-
erned by the magnitudes of m1 and m2 , respectively. A 2D 
plot of a ST shape generated by Eq. (14) is presented in 
Fig. 2b.

Modeling of ET

It is not possible to provide an analytical formula for mod-
eling the ET shape. A simple approach involves placing of 

(14a)
(x2 + y

2)4 + D(x2 + y
2)3 + E(x2 + y

2)2 + F(x2 + y
2)

+ Gz
2 + H = 0, upper half,

(14b)
(x2 + y

2)3 + I(x2 + y
2)2 + J(x2 + y

2)

+ Kz
2 + L = 0, lower half.

D = − (4m1 − 3)d2∕4m1,

E = 3(1 − 3m1 + 2m2

1
)d4∕16m2

1
,

F = − (m1 − 1)2(4m1 − 1)d6∕64m3

1
,

G = (1 − m1)
3d8∕256t2

1
m3

1
,

H =(m1 − 1)3d8∕256m3

1
.

I = − (3m2 − 2)d2∕4m2,

J = (1 − 4m2 + 3m2

2
)d4∕16m2

2
,

K = (1 − m2)
2
d
6∕64t2

2
m

2

2
,

L = − (m2 − 1)2d6∕64m2

2
.

Fig. 2  a 2D view of normal 
RBC. b–c Same as (a) but for 
pathological cells (ST and ET, 
respectively).

(a) (b) (c)
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half prolate spheroids mimicking spicules uniformly on a 
sphere (Larkin and Kuchel 2010). Fig. 2c illustrates such a 
scenario in 2D. The equation of a spicule placed on a sphere 
at an angular location ( � and � ) is given by,

where hs and bs are the lengths of the semi-axes of the pro-
late spheroid, respectively; asp is the radius of the inner 
sphere (see Fig. 2c). It may be emphasized that appropriate 
amount of rotations and a translation are given to the prolate 
spheroid so as to place its major axis perpendicular to the 
tangential plane (centered at � and � ) of the inner sphere.

Simulation method

Numerical construction of RBC shapes

The contour of the normal RBC was generated by evaluating 
Eq. (13). The numerical values of morphological param-
eters were taken from the literature (Muñoz San Martín et al. 
2006; Larkin and Kuchel 2010) and are also given in Table 1 
(second row). Accordingly, the coefficients A, B and C were 
calculated. Surface plot of normal RBC is demonstrated in 
Fig. 3a. The ST shape was formed by utilizing Eq. (14). 
As in the previous case, numerical values of various shape 
parameters were fixed on the basis of earlier works (Muñoz 
San Martín et al. 2006; Larkin and Kuchel 2010). Small 
variations in the shape parameters were also introduced to 

(15)

[(x cos � + y sin �) cos � − z sin �]2

b2
s

+
[x sin � − y cos �]2

b2
s

+

[(x cos � + y sin �) sin � + z cos � − (a2
sp
− b2

s
)
1

2 ]2

h2
s

= 1,

produce three variants of ST (see rows 3 to 5 of Table 1). 
The corresponding plots are shown in Fig. 3b–d. All these 
cells nearly have the same volume.

The ET cells were formed in silico in the following way. 
At first angular positions (a set of � , � ) of equispaced points 
( Ns ) on the surface of a sphere of radius asp were identified 
(sivu https:// www. cmu. edu/ biolp hys/ deser no/ pdf/ sphere_ 
equi. pdf). The coordinates of some points (i.e., x, y, z) on the 
surface of a half prolate spheroid (major axis along the 
z-axis) were generated. These points were rotated (counter 
clockwise) by an angle � with respect to the y-axis. Another 
rotation of � angle was given with respect to the z-axis. After 
that  al l  the points  were shif ted l inearly by √
a2
sp
− b2

s
sin � cos �  ,  

√
a2
sp
− b2

s
sin � sin �  a n d √

a2
sp
− b2

s
cos � along the x, y and z directions. These two 

successive rotations and a linear translation positioned the 
prolate spheroid at the angular location of ( � , � ) on the top 
of the inner sphere. Furthermore, the prolate spheroid 
aligned perpendicular to the spherical surface at ( � , � ). Other 
spicules were placed at the desired locations by following 
the identical steps.

Table 1 (rows 6–14) details the numerical values of various 
parameters ( Ns being the number of spicules). It has been seen 
that approximately 25–50 spicules typically cover the central 
spherical body in case of ET III. Furthermore, aspect ratio 
(spicule height over width at the base) is generally of the order 
of 0.8 (Ranjan Mukhopadhyay et al. 2002). In this study, the 
number of spicules was varied from 20 to 40. The radius of 
the inner sphere is consistent with the literature (Ranjan Muk-
hopadhyay et al. 2002). The numerical values of height and 
width of the base of the spicules were arbitrarily chosen mak-
ing the aspect ratio on the higher side. Figures 3e–g display 
representative ET shapes of constant volume with Ns = 20.

Table 1  Numerical values of 
morphological parameters of 
different cells considered in this 
study ( N

s
 represents the number 

of spicules)

Cell Morphological parameters Volume ( �m3)

Normal d = 7.8 � m, 2t = 1.0 � m, 2h = 2.19 � m, m = 0.9447 85.1
RBC
ST1 d = 7.8 � m, t 1 = 0.30 � m, m 1 = 0.80, t 2 = 0.70 � m, m 2 = 0.70 85.5
ST2 d = 7.8 � m, t 1 = 0.16 � m, m 1 = 0.885, t 2 = 0.84 � m, m 2 = 0.55 85.7
ST3 d = 7.8 � m, t 1 = 0.05 � m, m 1 = 0.9490, t 2 = 0.95 � m, m 2 = 0.4720 85.1
ET1 Ns = 20, asp = 2.70 � m, hs = 0.41 � m, bs = 0.4 �m 85.05
ET2 Ns = 20, asp = 2.62 � m, hs = 1.0 � m, bs = 0.5 �m 85.43
ET3 Ns = 20, asp = 2.49 � m, hs = 2.0 � m, bs = 0.5 �m 85.21
ET4 Ns = 31, asp = 2.69 � m, hs = 0.41 � m, bs = 0.4 �m 85.56
ET5 Ns = 31, asp = 2.55 � m, hs = 1.0 � m, bs = 0.5 �m 85.08
ET6 Ns = 31, asp = 2.34 � m, hs = 2.0 � m, bs = 0.5 �m 85.47
ET7 Ns = 40, asp = 2.67 � m, hs = 0.41 � m, bs = 0.4 �m 84.92
ET8 Ns = 40, asp = 2.50 � m, hs = 1.0 � m, bs = 0.5 �m 85.60
ET9 Ns = 40, asp = 2.20 � m, hs = 2.0 � m, bs = 0.5 �m 85.58

www.cmu.edu/biolphys/deserno/pdf/sphere_equi.pdf
www.cmu.edu/biolphys/deserno/pdf/sphere_equi.pdf
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Computation of OA spectra

The amplitudes of the outgoing spherical waves for vari-
ous source objects mimicking cells were evaluated by cal-
culating Eq. (10) over a frequency range of 1–1500 MHz 
with a step size of 5 MHz. Single-cell OA experiments 
have been carried out in the GHz range and that is why 
the upper limit of the frequency band was fixed to 1.5 
GHz. The numerical values of the thermo-opto-mechanical 
parameters were chosen as unity (i.e., � = 1 , � = 1 , CP = 1 , 
I0 = 1 ). The magnitudes of these parameters control the 
strength of the OA field but the spectral features remain 
unaltered. At the first step, we computed the OA spectra 
for a spherical source with a = 5 � m as the radius using 
the modified Green’s function approach. Subsequently, we 
compared the numerical results provided by this method 
and those of the exact technique. The sound speed inside 
the source was varied from vs = 1125 to 1875 m/s. The 
same quantity outside the source was taken as vf = 1500 
m/s (i.e., sound-speed in saline water at 27◦ C) (Saha and 
Kolios 2011). Therefore, the sound-speed mismatch was 
about ±25% . In the second case, we obtained the OA spec-
tra for normal and pathological RBCs. The sound-speed 
within the RBC was fixed at vs = 1639 m/s. It corresponds 

to the actual value of sound-speed for RBC (Saha and 
Kolios 2011).

The Monte Carlo integration method was implemented 
to carry out the integration in Eq. (10). Essentially, a large 
number of points were randomly thrown inside a box. A 
cell of interest was placed at the center of this box. The 
OA fields for a particular frequency and at a specific detec-
tor location were calculated for the random points which 
lied inside the cell. These fields were summed up to obtain 
the OA spectrum. These steps were repeated for 200 detec-
tor locations (randomly positioned over the 4� angle) and 
the corresponding power spectra were added up to obtain 
the resultant spectrum averaged over 200 orientations. For 
example, a box of size 12 × 12 × 12 �m3 was considered 
to bound a spherical source of radius a = 5 � m. Approxi-
mately, 500000 points were thrown within this box and 
more than 150000 points were found to be lied inside the 
sphere. A numerical code (in MATLAB 2015a) was written 
for this purpose and was executed in a personal computer 
(Windows 10 as the operating system, Intel(R) Core(TM) 
i3-6006U processor, 2.00 GHz clock speed, 8 GB RAM). 
It took less than 10 min to run for 200 orientations. Simi-
larly, for normal RBC and STs, 500000 points were thrown 
inside a box of 8 × 8 × 4 �m3 and out of which about 165000 

Fig. 3  a Surface plot of normal 
RBC. b–d Same plots for the 
stomatocyte shapes. e–g 3D 
plots for the echinocyte shapes 
with number of spicules, 
N
s
= 20 . Spicule size increases 

gradually from e–g. Normal and 
deformed cells approximately 
have the same volume.

(a)

(c) (d)(b)

(e) (f) (g)
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points occupied the source volume. For ETs, 1000000 ran-
dom points were generated inside a box of 10 × 10 × 10 �
m3 . Nearly, 210000 points (average) contributed to the field 
calculation and average execution time was about 13 min 
for 200 orientations. These Monte Carlo steps were suffi-
cient enough to provide converging results for all the cases 
(comparable results were also obtained even when the Monte 
Carlo steps were doubled).

Simulation results

Plots of the OA spectra generated by a spherical source 
with radius a = 5 � m are shown in Fig. 4. The sound-speed 
inside the source is gradually increased from vs = 1125 to 
1875 m/s (from top to bottom). A similar spectrum for the 
exact analytical method is also included in each figure for 
comparison. Each spectrum exhibits well-known peaks and 
dips pattern which arises because of the spherical Bessel 
function (first kind and of order unity). It can be seen that 
the calculated spectra for the proposed scheme demonstrate 
perfect match with those of the exact method. Moreover, the 
first minimum shifts at higher frequency as the sound speed 
inside the source increases. This is expected because the 
width of the N-shape pulse (in the time domain) decreases 
as the sound-speed inside the source increases. As a result 
of that, first minimum shifts at a higher frequency. Figure 4 
validates the approach presented herein for solving the OA 
wave equation in the frequency domain for acoustically inho-
mogeneous source.

Figure 5 shows that the OA spectrum for a normal RBC 
passes through several maxima-minina (e.g., minima loca-
tions are at 256, 506, 716, 931, 1141, 1376 MHz) within the 
frequency bandwidth (1–1500 MHz) when the probing angle 
is � = �∕2 (i.e., along the X/Y axis, see Fig. 1). Further, only 
one minimum occurs at 896 MHz when the field is com-
puted along the axis of symmetry (i.e., � = 0 , along the Z 
axis, see Fig. 1). The number of frequency minima gradually 
increases if the detector is moved from the Z direction to the 
X/Y direction as can be seen from this figure.

Simulated OA spectrum averaged over 200 orientations 
for a normal RBC is shown in Fig. 6a. The curve is plotted 
over a bandwidth of 50–1500 MHz to improve the clarity 
of the figure. The same plot for a spherical RBC is also 
presented in this figure for comparison. These two spectra 
appear comparable up to 266 MHz but after that they are 
remarkably different. The OA spectrum for a normal RBC in 
general exhibits an oscillatory pattern [see Fig. 5]. However, 
only one prominent dip is visible at nearly 906 MHz in this 
case owing to the orientation averaging. The OA spectrum 
for a spherical RBC contains several maxima and minima. 
The first dip appears at about 425 MHz which is much ear-
lier than that of a normal RBC. The OA spectra for STs are 
drawn in Fig. 6b. These graphs are almost indistinguishable 
and also look identical to that of a normal RBC.

Similar plots for ETs are displayed in Fig. 7. Three sepa-
rate figures are used to increase the visibility of each figure 
as well as to show small changes in each spectrum. The 
OA spectrum for ET1 appears as that of a sphere. This is 
obvious because the heights of the spicules are small in this 
case. It can be seen that the prominent peaks and dips pat-
tern vanishes approximately above 575 MHz for ET2. It is 
also true for ET3. It may happen because OA fields from 
the protrusions, in addition to the inner spherical body, con-
tribute in these cases and thus the spectra become relatively 
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flat. Similar observations can be made from Figs. 7b and c. 
However, an additional peak appears around 1000 MHz for 
ET6 and ET9.

Discussion and conclusions

Time-independent inhomogeneous OA wave equation is 
solved using a modified Green’s function approach. In this 
formulation, acoustic property of the source is incorporated 
within the Green’s function to appropriately model wave 
propagation inside the source. The calculated fields for this 
scheme demonstrate perfect match with those of the exact 
method. However, it has been seen that M(�) is essentially 
calculated to be real (thus, does not have any imaginary 
part). Therefore, phase part of the OA field is not correctly 
reproduced in this method. Further, OA field calculation 
is accomplished by considering the first source term only 
(ignoring the scattering potential). It would be interesting in 
future to examine the validity of this method for calculating 
the OA field from a collection of acoustically inhomogene-
ous sources where multiple scattering of acoustic waves may 
take place because of nonvanishing scattering potentials.

In this work, it has been assumed that the PA source is 
uniformly irradiated by the incident laser beam. It may hold 
if the beam diameter is large compared to the characteristic 
dimensions of the source. However, for narrow beam (with 
respect to the source), it may not hold. Therefore, in future, 

it would be interesting to examine the effect of gradient 
absorption profile on the OA spectrum. In addition to that, 
scattering (which is dependent on the shape of the source) 
and polarization of the incident light beam need to be incor-
porated within the model. Further studies are required to 
investigate these issues.

This work includes mathematical equations for generating 
contours of normal erythrocyte and STs. The framework is 
flexible enough so that continuous deformation from healthy 
erythrocyte to various variants of STs are possible. However, 
for ET shapes, such equations do not exist. Hence, a simple 
approach has been adopted here. It models each spicule as 
a half prolate spheroid and such spheroids have been uni-
formly placed on the surface of a sphere. It may be noted that 
in this approach ET shapes are described using only three 
parameters [radius of the inner sphere, height and width (at 
the base) of the spicules]. Nevertheless, there exists a draw-
back in this modeling approach. In fact, junctions between 
the spicules and the spherical object are not continuous 
curves unlike real ET shapes (Larkin and Kuchel 2010). An 
attempt may be made to generate ET structures using spheri-
cal harmonic expansions so that the junctions would become 
smooth and continuous.

The PA spectra for a  normal RBC contain several 
maxima and minima [see Fig. 5]; however, the spectrum 
shown in Fig. 6a looks relatively flat (only one minimum 
occurs at 906 MHz). This is also true for STs (see Fig. 6b). 
This is because of the orientation averaging. However, the 

Fig. 6  a Plots of the OA spectra 
averaged over 200 orientations 
(denoted by < − > ) for normal 
and spherical RBCs. b Same as 
(a) but for the STs.

(a) (b)

(a) (b) (c)

Fig. 7  a–c Demonstration of the OA spectra averaged over 200 orientations (indicated by < − > ) for different variants of ETs.
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fluctuations are greatly vivid in Fig. 6a for  the spherical 
RBC. Similar observations can also be made from Fig. 7. 
Moreover, each spectrum gets affected by the spicules 
after the first minimum (approximately 430 MHz). In this 
study, we considered 200 orientations of the target parti-
cle while computing the average spectrum. The morpho-
logical parameters of the test object can then be obtained 
from such an averaged PA spectrum by utilizing an inverse 
problem framework (Kaushik et al. 2020). In a typical 
experimental situation, few hundred cells are examined 
(Neukammer et al. 2003) and these cells may have differ-
ent orientations when they encounter the incident laser 
beam (see bottom row of Fig. 1 of Kaushik et al. 2020). 
Therefore, the effect of orientation averaging is always 
embedded in an experimentally obtained average spec-
trum. The simulation of PA spectrum averaged over many 
orientations better emulates the experimental situation.

Recently, we computed OA spectra for a series of 
acoustically homogeneous sources resembling cells (Kau-
shik et al. 2020). This procedure included various realistic 
factors such as detector with finite aperture, acoustically 
lossy and dispersive coupling medium (from source to 
detector) and intra-variability of the source while estimat-
ing the spectrum. We also presented an inverse problem 
framework for obtaining the size and shape information of 
the source from the OA spectrum using form factor models 
(Kaushik et al. 2020). We speculate that this analysis pro-
tocol may find applications for analyzing OA flow cytom-
etry data (Strohm et al. 2013a, b). Therefore, in future, 
it would be interesting to utilize this spectrum analysis 
methodology for analyzing the spectra generated by acous-
tically inhomogeneous source (as presented in this work) 
for simultaneous characterization of source morphology 
and speed of sound inside the source.

In conclusion, the time-independent OA wave equation 
for an acoustically inhomogeneous source (with respect to 
the ambient medium) is solved deploying a modified Green’s 
function method. In this approach, acoustic property of the 
source is incorporated while modeling the wave propagation 
inside the source. This strategy works very well for acousti-
cally inhomogeneous source and emerges out as a very fast 
and accurate method. This framework has been utilized to 
compute the OA spectra for normal RBC and cells affected 
by stomatocytosis and echinocytosis. The OA spectra aver-
aged over many orientations for ETs are significantly differ-
ent from those of normal RBC and STs. Therefore, detec-
tion of cells suffering from echinocytosis from normal RBCs 
may be feasible and finally, this observation may help to 
develop an OA technology for cell characterization.
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