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Abstract
Photoacoustic tomography (PAT) imaging employing polynomial-based interpolationmethods is
discussed. Nearest-neighbor, bilinear, bicubic and biquintic algorithmswere implemented for the
construction of themodelmatrix, and imageswere formed using the Tikhonov regularization and
total variation (TV)minimization procedures. The performance of the interpolationmethodswas
assessed by comparing the reconstructed images of three numerical and two experimental phantoms.
The numerical and experimental studies demonstrate that the performance of the interpolation
schemes is nearly equal for large PA sources. The simplest nearest-neighbor technique provides better
image reconstruction for a sparse source compared to the others. The nearest-neighbor protocolmay
be adopted in practice for vascular imaging using PAT.

1. Introduction

Photoacoustic (PA) imaging is a hybrid imaging mod-
ality that uses optical illumination and ultrasound
detection [1, 2]. On one hand, the state-of-the-art PA
microscopy imaging technique enables to visualization
of specialized subunits (organelles) within a cell to
individual cells with lateral resolution ranging from
hundreds of nanometers to severalmicrometers. On the
other hand, modern PA tomography (PAT) setup can
form images of tissue structures located several centi-
meters deep. A number of reconstructionmethods have
been developed for this purpose. The goal is to develop a
fast and efficient reconstruction algorithm suitable for
real-time imaging. Analytical approaches such as uni-
versal backprojection algorithm and time-reversal
method are simple and fast but they lack to provide
quantitative information of the imaging region [3, 4]. In
order to overcome this limitation, the model matrix
inversion technique has been implemented [5, 6]. In
general, this approach is computationally expensive in
terms of memory and execution time, however, capable
of providing accurate quantitative information of the
region of interest. So far, the model matrix has been
constructed either by loading spatial impulse response
functions of the receivers [5] or by exploring a suitable
interpolation scheme such as bilinear interpolation [6].

Image interpolation is of great importance inmed-
ical imaging and is often required to achieve various
ends [7]. It is a basic tool used for image zooming,
shirking, rotating, and performing geometric correc-
tions. Several interpolation kernels with finite sizes
have been introduced. Examples include truncated
and windowed sinc, nearest neighbor, linear, cubic,
quadratic, quintic, Lagrange and Gaussian interpola-
tions [7]. As stated above, PAT image reconstruction
was carried out using the bilinear interpolation proto-
col. To the best of our knowledge, no other poly-
nomial-based interpolation techniques have been
deployed so far.

A natural question is how other polynomial-based
interpolation algorithms would work in PAT image
reconstruction. An attempt has been made in this work
to address this issue through simulations. The main
contributions of this work are to- (i) present an algo-
rithm for computing the interpolation weights, (ii)
implement the nearest-neighbor (NN), bilinear (BL),
bicubic (BC), and biquintic (BQ) procedures for the
construction ofmodelmatrix and (iii) compare the per-
formance of the interpolation techniques for PAT
image reconstruction. Regularized solutions have been
obtained by deploying the Tikhonov regularization and
the total variation (TV) minimization approaches.
Image reconstruction has been performed for three
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numerical phantoms, namely, Gaussian discs, Derenzo,
and vasculature phantoms. PAT experiments have also
been conducted with two simple phantoms (a plastic
tube containing black ink and a triangular source
formed using Graphaite pencil leads). Some standard
image quality parameters have been computed for
quantitative assessment of the interpolation algorithms.
It has been found (via numerical and experimental
investigations) that the interpolation schemes produce
comparable reconstructed images for a large PA source
(disc). Nevertheless, NN may be preferred over higher
order interpolations for the formationof a light-absorb-
ing structurewithmanyfine branches (vasculature).

The layout of the paper is as follows. The next
section discusses the theoretical foundation of this
work. The computational and experimental methods
are described in section 3. Section 4 highlights various
results obtained in this study. The discussion and con-
clusions of this work are presented in section 5.

2. Theoretical ingredients

2.1. Reconstruction algorithms
The PAT image reconstruction can be treated as a
linear inverse problem which provides a system of
linear equations [5],

z p z p, , , 1f
m n n

f
m ( )L = L Î Î Î´  

where Λ is the model matrix (or system matrix); z is
the unknown representing a spatial map of initial
pressure rise/light absorption function; pf is the
measured pressure data. The subscript f stands for an
ambient fluid medium where measurement has been
carried out.

The model matrix in general depends upon the
geometry of the PAT system, speed of sound in the
medium, and properties of the individual detectors
(e.g., frequency response and sensitivity profile of the
receiving aperture). It is generally a large and ill-condi-
tioned matrix. The computation of a reliable solution
to equation (1) can be accomplished using the Tikho-
nov regularization method by minimizing the follow-
ing cost function [5],

z p Lz , 2f 2
2 2

2
2    ( )lW = L - +

where ∥ · ∥ι is the lι norm. The quantity λ is the
regularization parameter and L is the regularization
matrix (a derivative operator); λ and L together
control smoothness of the solution.

The standard form of equation (2) has been
explored extensively for PAT image generation [i.e.,
L= I where I is the identity matrix]. For this case, an
analytical solution can be obtained, by minimizing
equation (2), as,

z I p , 3r
T T

f
2 1( ) ( )l= L L + L-

where T denotes the transpose operator. Further
manipulation of equation (3) can be carried out in
order to yield a simple expression. For example, the

singular value decomposition (SVD) of Λ can be
written as,

USV u v , 4T
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where V= (v1, v2,K,vn), U= (u1, u2,K,un) are the
right and left orthogonalmatrices, respectively provid-
ing UTU= VTV= In and m� n; S= diag(σ1,
σ2,K,σn). The diagonal elements are non-negative
and ordered in the descendingmanner such that,
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The substitution of equations (4) into (3) provides,

z VS SV I VS U p

V S S S U p

u p
v , 6

r
T T T T

f

T T T
f

i
n i i

T
f

i
i

2 1

2 1

1 2 2

( )

( )

( )
( )

l

l

s

s l

= +

= +

= å
+

-

-

=

where i

i
2 2

s
s l+

is the filter factor. The filter factors

suppress the contributions from the small singular
values, nevertheless, do not impact those of large
singular values. It may be emphasized that at higher
regularization, the imagebecomesover smoothed. Small
λ values amplify noise in the PA image. There exist
several algorithms tofind out the optimal value ofλ. For
instance, L-curve, generalized cross-validation (GCV)
methods canbeutilized to accomplish this [8, 9].

Another approach called the TVminimization has
also been applied for the same purpose. This approach
works well for limited view data set. The cost function
in this case becomes,

z p z
2

, 7f 2
2

1    ( )h
W = L - + 

where η (> 0) is the penalty parameter and ∇ is the
gradient operator. The minimization of equation (7)
does not offer any analytical solution as in the previous
case. Therefore, various computational methods have
been developed to obtain numerical solutions. For
example, Li et al used augmented Lagrangian and
alternating direction algorithm (ALADA) for this
purpose [10]. In this work, image reconstruction has
been performed using the Tikhonov and the TV
regularizationmethods.

2.2. Relationship between initial pressure rise and
recorded pressure
The PA pressure data (pf) in practice are obtained either
from experiments or numerical simulations for com-
plex structures. Theymay also beproduced theoretically
for simple shapes. The theoretical model that describes
the generation and propagation of PA waves for a delta
function incident light pulse (δ(t)) is given by [3],

p t
v

p t

t

p

v

d t

dt
r

r r
,

1 ,
, 82

2

2

2
0

2
( ) ( ) ( ) ( ) ( )d

 -
¶

¶
= -

where v is the speed of sound in the medium and
p0(r)= Γμ(r)F is the initial pressure rise [also defined
as z in equation (1)] due to absorption of light withΓ as
the Gr ü neisen parameter; μ(r) denotes spatial
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distribution of light absorption and F is the fluence of
the incident light beam. The solution of equation (8)
in two dimensions can be given by the Poison-type
integral as [11],

p t
v t

p
d tr

r

r r
,

1

4
, 9f

t
0

0

0

( )
( )

∣ ∣
( ) ( )

( )òp
t=

¶
¶ -t

where τ(t) is the arc length within the illuminated
region for which |r0− r|= vt with r and r0 as the
source and field points, respectively. The corresp-
onding schematic diagram is shown in figure 1(a).
Equation (9) states that signals from the points lying
on this arc are added up coherently at r0 and the time
derivative of the resultant signal gives rise to the PA
pressure at r0 at time t. Equation (9) can be discretized
providing [11],

p t
I t t I t t

t
r ,

2
, 10f 0
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t
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0

0
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∣ ∣ò t=
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. This simple forward

model explicitly asserts that the points lying on two
arcs indeed participate in producing the PA pressure at

r0 at time t. For the first arc, |r0− r|= v(t+Δt) and
for the second one, it is v(t−Δt).

2.3. Interpolation schemes
Consider that pressure (z) at a point (x, y) needs to be
estimated when those of the adjacent neighbors are
known as shown in figure 1(b). In this case, simple
interpolationmethods can be used such as,

z x y

W z

W z

W z

,

, for BL interpolation

, for BC interpolation

. for BQ interpolation

11
k k k

k k k

k k k

1
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1
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1
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⎧
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⎪
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( )=
å

å

å

=

=

=

where Wks are the weight factors and zks are the
pressure values at the grid crossings as shown in
figure 1(b). It is clear from equation (11) that weighted
contributions from 4, 16, and 36 neighboring points
are considered in the case of BL, BC, and BQ
interpolation schemes, respectively. Note that distal
points also contribute to the estimation for the case of
higher-order interpolation algorithms. The weight
factors for the BL method can be presented in the

Figure 1. (a) Schematic diagramof the PAT imaging system. The PAwaves originating frompoints (yellow dots) lying on the arc,
inside the sourcemeet at the same time at the detector (D). (b)Neighboring grid points contribute to the interpolation schemes (for
BL- points inside the innermost box, for BC- points inside themiddle box, for BQ- points inside the outermost box).

Figure 2.Numerical phantoms considered in this study- (a)Gaussian discs phantom, (b)Derenzo phantom, and (c) vasculature
phantom.
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followingmatrix form,
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where Δx= (x− x1)/dx, Δy= (y− y1)/dy with
dx= dy is the grid size. The algorithm for determining
the weight factors for each interpolation technique is
presented in table 1. Equation (11) states that pressure
at an internal point can be computed using the
pressure data from the surrounding points. However,
for the PAT image reconstruction, the inverse situa-
tion is encountered. It means that pressure data at
various internal points are known but those of the grid
points are not known, which can be estimated as
described here.

Following the acoustic reciprocity theorem, one
can distribute measured pressure (recorded at a detec-
tor at a particular instant) equally at the points lying on
a specific arc [see figure 1(a)]. Therefore, pressure
values at the points on the arc are known and each of
them can help to estimate pressure data on the neigh-
boring imaging grid points via an interpolationmodel.
This forms the basis of the construction of the model
matrix using interpolation methods. Thus, the rela-
tion between measured data and estimated pressure at
various grid crossings can be expanded as [11],

p t W zr , , 13f j
i

n

ji i0
1

( ) ( )å=
=

where pressure is measured at tjth instant, Wji is the
coefficient as shown in equation (11) and i indicates
the grid number (counted by traversing the imaging
region column-wise starting from the top row leftmost
corner). Note that coefficients become positive for the

grid crossings enclosing points on the arc for which
|r0− r|= v(tj+Δt); however, coefficients for the
grid crossings corresponding to the other arc for
which |r0− r|= v(tj−Δt) become negative [see
equation (10)]. The coefficients become zero for grid
crossings that do not bound the arcs. Thus, the Λ

matrix can be constructed by deploying equation (13)
for all the detectors. The BL, BC, and BQ interpolation
protocols have been employed in this work for image
reconstruction. The same has also been done for the
NNmethod.

3. Computational and experimental
methods

3.1. Computationalmethods
3.1.1. Forward data simulation
The forward pressure data were simulated using
k-Wave toolbox [12]. A schematic diagram of the
simulation setup is presented in figure 1(a). The
computational region was discretized into
1101× 1101 grid points with a resolution of
dx= dy= 0.1 mm. An absorbing layer consisting of
10 grid points was placed at each boundary. The size of
the imaging region was 175× 175 grid points. The
density and speed of sound throughout the medium
(acoustically lossless)were chosen as 1000 kg m−3 and
1500 m/s, respectively. In this study, 100 point
detectors were positioned uniformly at a distance of
50 mm from the scanning/imaging center, covering
an angular range of 0 to 2π. The center frequency of
each detector was set to 2.25 MHz with 70% band-
width. A 40 dB noise level was also added with the
recorded PA signals. The sampling interval was
Δt= 20 ns and the PA pressure values at 826 time
points (from 1254Δt to 2079Δt) for each sensor were
utilized for image reconstruction. Three numerical
phantoms were considered in this study, such as
Gaussian discs, Derenzo, and vasculature phantoms
[see figure 2]. The first phantom is composed of large
absorbing regions. The PA sources are distributed all
over the imaging region in the second phantom. The
light-absorbing branches are thin and sharp for the
third phantom.

3.1.2. Image formation
The size of the Λ matrix became m= 57820 and
n= 30625. The Λ matrix was constructed in the
followingmanner. At first, it was initialized with zeros.
After that, an arc for a particular detector corresp-
onding to a specific time point was considered [see
figure 1(a)]. The entire arc length within the angle α
was divided into 200 sub angles providing 201 discrete
points on the arc. The next step was to find out the
neighboring grid crossings (1 for NN, 4 for BL, 16 for
BC, and 36 for BQ)with respect to each point lying on
the arc, inside the imaging region. The corresponding
interpolation weights were computed using algorithm

Table 1.Algorithm for calculation of interpolation
coefficients. Here,N = 4, 16 and 36 for BL, BC andBQ,
respectively.

Input: x, y, dx,N; xks, yks, zks, k = 1 toN;

Output: Interpolationweights-W1,W2, ...,WN

Step 1: M N 1¬ -
Polynomialmodel for interpolation—

z ai
M

j
M

ij
x x

dx

i y y

dy

j

0 0
1 1( )( )= å å= =

- -

Step 2: for l = 1 toMdo step I

I. Calculate zls using the above expansion

Step 3: Form a systemof linear equations, z=Ba

Step 4: CalculateB−1

Step 5: Obtain the elements of a from, a = B−1z

Step 6: Determine 1, ,..., , ,...,T
y y

M
x[X = D D D

, ,..., ,...,x y
M

x x y
M

x
M

y
M2 2 ]D D D D D D D

Step 6: ComputeWs using, W B T1( )= X-
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1. The detector and time indices together provided the
row location and grid crossing (its row and column
indices) facilitated the column index of the Λ matrix.
Therefore, a particular location in the Λ matrix was
identified for each weight factor and its numerical
value was added with the existing value of the Λ

matrix. In this way, weight factors for all the points on
the arc were loaded into the Λ matrix. The above
procedure was repeated for all the time points and for
all the detectors in order to form the Λmatrix. The L
matrix of size n× n was formed by implementing a
spatial Laplacian filter with a kernel (KL),

K
1

9

1 1 1
1 8 1
1 1 1

. 14L
⎛

⎝
⎜

⎞

⎠
⎟ ( )=

- - -
- -
- - -

After building Λ and L, image reconstruction was
performed using the regularization methods consid-
ered in this work. The cgsvd, l_curve, and tikhonov
functions of the Regularization toolbox were used for
the first approach. The cgsvd function computed the
SVD of the pair of matrices (Λ, L). The l_curve
function provided the optimal value of λ based on the
inputsU, S and pf. The optimized values of λwere not
the same for different numerical phantoms (since the
long vectors pf were different for different phantoms).
ThematricesU, S,V, pf and the optimum λwere given
as the inputs for the tikhonov function, which
determined the regularized solution for each phan-
tom. The TVAL3 function (TV/L2) of the TVAL3
toolbox was employed for the second method [8, 10].
Various values of η were tried on a test image. The

Figure 3. (a)Block diagramof the experimental setup; (b) and (c) photographs of the phantoms.

Figure 4. (a)–(d)Reconstructed images of theGaussian discs phantomusing the Tikhonov regularizationmethod for theNN, BL, BC,
andBQprotocols, respectively. (e)Plot of the PApressure along the diagonal line as shown in eachfigure (green line). The same line of
the source phantom is also included here for comparison. (f)–(j) Same as (a)–(e) but for the TVminimization technique.
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numerical value of η, which gave the best-recon-
structed image, was utilized for this work. The numer-
ical codes were executed in a virtualmachine [CentOS,
Intel Core Processor (Broadwell, IBRS) working at
2.19 GHz, 256 GBRAM, 80Cores].

3.1.3. Computation of image qualitymetrics
The metrics utilized in this study are briefly described
here. Thesemetrics were calculated only for the images
generated using simulated (k-Wave)PA signals.

Rootmean square error (RMSE):The formula for
RMSE is,

n
z zRMSE

1
, 15

i

n

ti ri
1

2( ) ( )å= -
=

where zt and zr are the initial pressure distribution in
the target and the reconstructed images, respectively;
both the images contain n number of pixels and the
subscript i represents the ith pixel. Lower is the value
of RMSE, better is the reconstruction.

Pearson’s correlation coefficient (PCC): The
PCC for each reconstructed image was calculated with
respect to the target as [13],

z z
PCC

COV ,
. 16t r

z zt r

( ) ( )
s s

=

The COV stands for covariance and σ indicates the
standard deviation. PCC varies from –1 to 1. It
approaches 1 for perfect image reconstruction.

Contrast to noise ratio (CNR): The formula for
calculating theCNR is given by [14],

n n
CNR , 17roi back

roi roi back back
2 2 1

2( )
( )

m m
s s

=
-

+

where, ‘roi’ and ‘back’ are the source and the back-
ground regions of the reconstructed image. Here, μ
represents the mean; nroi= Aroi/Atotal and
nback= Aback/Atotal where Aroi and Aback are the total
number of pixels in the ground truth with p0≠ 0 and
p0= 0, respectively; Atotal is the total number of pixels
in the original/reconstructed image.

Structure similarity index measure (SSIM): The
SSIM quantifies the structural similarity between the
target and the reconstructed image. The SSIM can be
determined by evaluating the following equation [15],

c z z c

c c
SSIM

2 2 COV ,
. 18z z t r

z z z z

1 2

2 2
1

2 2
2

t r

t r t r

( )( ( ) )
( )( )

( )
m m

m m s s
=

+ +

+ + + +

In case of weak denominator, c1 and c2 stabilize the
above equation. The SSIM can be computed using the
inbuilt ssim function of Matlab, which, by default,
assigns the numerical values of c1 and c2. The pressure
values associatedwith pixels for both the target and the
reconstructed images weremapped (using shifting and
scaling), with respect to the same scale ranging from 0
to 1, into 256 gray levels. After that SSIM was
calculated for each interpolation scheme.

Figure 5. Same asfigure 4 but for theDerenzo phantom.

Figure 6. Same asfigure 4 but for the vasculature phantom.
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3.2. Experimental procedure
The details of the experimental setup is displayed in
figure 3(a). A Q-switched, Nd:YAG, nanosecond, pulsed
laser (NT352C-10-SH-H, Ekspla)was deployed to emit a
532 nm beam with 6 ns pulse duration at 10Hz
repetition rate (energy per pulse was nearly
13.7mJ cm−2). A single-element ultrasonic detector
(V325-SU, Panametric) with 2.25MHz, 70% and
9.5mm as the center frequency, fractional bandwidth,
and diameter, respectively captured the PA signals. The
detected signals were preprocessed using a pulser/
receiver (DPR300, JSR Ultrasonics). Such signals were
digitized (25MHz as the sampling frequency) and stored
using a data acquisition card (PCIe-9852, ADLINK). The
transducer revolved around the sample in a circular path
covering 360 degrees (scanning radius was about 47
mm). The scanning speed was set to 0.5 degree/s. A

customized setup was built for this purpose (Holmarc,
India). The PA pressure data were collected from two
phantoms as shown in figures 3(b) and (c). A plastic tube
was filled with black ink in the case of the first phantom.
A triangular shape was constructed using pencil leads
(Graphite) in the case of the second phantom. The radio
frequency lines for 100 detector locations (signal at each
location was obtained by taking the average from 20
lines)were utilized for image reconstruction. The size of
the reconstructed image became 101× 101 pixels with
dx= dy= 0.2mm. To compare the performance of the
interpolation methods, signal-to-noise ratio (SNR) was
computed for each reconstructed image. The SNR is
defined as,

A
SNR 20 log , 19

back
10 ( ) ( )

s
=

Figure 7.Comparison between the source and the reconstructed images (generated via simulations) using various errormetrics; (a)–
(c): RMSE; (d)–(f): PCC; (g)–(i): CNR; (j)–(l): SSIM.
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where A is the peak pressure value in ‘roi’ and σback
represents the standard deviation of ‘back’. The
pressure values at the red (region of interest- 64 pixels)
and the green (background region- 121 pixels) sectors
have been utilized to calculate the SNR [see
figure 8(a)].

4. Image reconstruction results

4.1. Computational results
Figures 4(a)–(d) display the reconstructed images of
the multiple Gaussian discs phantom generated by the
Tikhonov regularization method for the NN, BL, BC,
and BQ protocols, respectively. The plot of the PA
pressure along the diagonal line of each image is shown
in figure 4(e). The same quantity for the source
phantom is also included in thisfigure for comparison.

The corresponding images obtained from the TV
minimizationmethod are presented in figures 4(f)–(j).
The images constructed by various methods are pretty
similar and no significant difference can be seen. This
is consistent with the line plots [figures 4(e) and (j)]
and figure 7. For example, the numerical values of
RMSE, PCC, andCNR are comparable for theNN, BL,
BC, and BQ methods in each regularization frame-
work [see figure 7(a), (d) and (g), respectively].
However, the SSIM for the NN technique is slightly
higher than those of the other schemes [see figure 7(j);
approximately 13% higher with respect to the BL for
the Tikhonovmethod].

Simulated images of the Derenzo and vasculature
phantoms are shown in figures 5 and 6, respectively.
Note that all the methods can recover the small struc-
tures much more accurately than the large discs

Figure 8. Image formation using the experimental data recorded for the single tube phantom. The penalty parameters (λ, η) are given
in the respective images. The signal-to-noise ratio (SNR) for each image is pasted at the top right corner. The unit of SNR is dB.

Figure 9. Image reconstruction of the triangular phantomutilizingmeasured signals (same asfigure 8).
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present within the illuminated region and they per-
form quite equally (see figure 5). The image quality
metrics generally do not vary significantly for this
phantom (second column of figure 7). In the case of
the vasculature phantom, the NN algorithm along
with the TV framework works much better than the
other approaches (compare figure 6(f) with others). It
is clear from the third column of figure 7 that each
metric corresponding to the NN algorithm is either
comparable or higher than that of the higher-order
protocols. For instance, CNR attains the highest value
for the TV formulation (seefigure 7(i)).

4.2. Experimental results
The reconstructed images of the experimental phan-
toms are presented in figures 8 and 9. The optimum
value of λ for each interpolation method is pasted at
the top left corner of each figure. The numerical value
of SNR computed for each image is also given at the
top right corner. It is clear from figure 8 that improved
imaging is possible if one uses higher-order interpola-
tion methods instead of the NN scheme. In particular,
the region outside the tube has been reproduced in a
much better fashion in figures 8(b)-(d) than that of
figure 8(a). This is also true for the TV method (see
bottom row of figure 8). Moreover, SNR values in
general gradually increase as the complexity of inter-
polation increases. Similar figures for the triangular
phantomare shownfigure 9. TheNNprotocol appears
to be the bestmethod and this can be observed for both
the regularization methods. As in the previous case,
noise cleaning at the distal regions (from the center) is
better in the TV technique in comparison to the
Tikhonov technique.

5.Discussion and conclusions

In this work, we utilized various interpolation schemes
for constructing the systemmatrix. Note that pressure
at an interpolating point depends upon its magnitude
at the nearest grid crossing in the NN model whereas
grid crossings at distal regions also contribute in
higher-order models. It may be thought of as a
diffusion process, which may work favourably for the
reconstruction of large objects. This is not distinctly
clear from the simulation results (see figure 4) but is
evident from the experimental results (see figure 8).

That is why the SNR values for the BL, BC, and BQ
methods are higher than that of the NN method for
the single tube phantom. The diffusion process may
introduce redundant and wrong information for a PA
source with thin and sharp branches (e.g., blood
vessels). This may be the reason for which higher-
order models formed relatively low-quality images
than that of the NN model for the vasculature
phantoms (see figure 6 and figure 9). It would be
interesting in the future to evaluate the performance of
these interpolation methods for PAT imaging with
finite sensors. Additionally, the efficacy of B-spline
and other interpolation techniques may also need to
be investigated.

One of the important aspects of the Tikhonov reg-
ularization is to find out the optimum regularization
parameter (λ). Various methods have been tested to
accomplish this [16, 17]. In these works, the system
matrix was built using the time domain signals gener-
ated by the individual pixels and recorded by each
detector. Previously, we also constructed the system
matrix in this manner [13] and the L-curve technique
was employed to determine the optimized λ. Its num-
erical value demonstrated a good correlation with the
literature. Nevertheless, the numerical values of λ

evaluated in this work were in general found to be on
the higher side with respect to those of the literature
[13, 16, 17]. Note that the system matrix in an inter-
polation method is built based on the distances of the
grid points from the individual points with known PA
pressure. Therefore, it is a different procedure than the
impulse response-based method. This may be the rea-
son for which the numerical values of λ in this work
were computed to be greater than the reported values.
However, additional work is needed to resolve this
issue. We also plan to employ the impulse response-
based method for the generation of the system matrix
and perform image reconstruction using measured
signals.

This paper includes l2 norm-based Tikhonov and
l1 norm-based TV regularizations for PA image recon-
struction. The first method took a longer time to exe-
cute than the second algorithm. The computational
time for various techniques is detailed in table 2. It
illustrates that the computational time decreases for
the Tikhonov technique (see row 3, columns 3-5 of
table 2) and increases for the TVmethod (see rows 4-5,

Table 2.Chart displaying execution time taken for image reconstruction by eachmethod.

Phantom
Tikhonov (s) TV (s)

NN BL BC BQ NN BL BC BQ

SVD 4572 4755 4212 3946

Gaussian discs 30 33 32 32 508 415 450 567

Derenzo 30 31 33 32 590 460 490 619

Vasculature 30 31 31 32 583 483 512 613
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columns 7-9 of table 2) as the order of the interpola-
tion scheme increases. It may be mentioned here that
the execution time presented herein is significantly
higher than the values reported in the literature [18].
Awasthi et al performed the TV regularization using a
toolbox that implements split augmented Lagrangian
shrinkage algorithm (SALSA) whereas the ALADA
algorithm is realized in the TVAL3 toolbox. Afonso
et al originally implemented the SALSA algorithm in
the context of image processing [19]. It seems that the
SALSA algorithmworks faster than the ALADA proto-
col. Further investigation is required to address the
same issue for the Tikhonov regularization technique.
It may also be emphasized here that recently fractional
regularization techniques [9] have been applied for
PAT imaging. It has been shown that fractional meth-
ods can provide improved image reconstruction.
Therefore, it would also be interesting to implement
fractional techniques for tomography imaging.

In conclusion, the reconstructed images for an
extended light absorbing object look similar for all the
interpolationmethods (i.e., NN, BL, BC, BQ). It is true
for both the minimization procedures. The NN algo-
rithm in combination with the TV minimization pro-
tocol provides acceptable reconstructed images for a
PA source containing several thin and sharp branches.
The simplest NN scheme emerges as the most suitable
candidate for vascular imaging in practice.

Acknowledgments

The computational results reported in this work were
performed on the Central Computing Facility of
IIITA, Allahabad. This work was supported by the
ICMRgrant (# 56/2/2020-Hae/BMS).

Data availability statement

Nonewdatawere created or analysed in this study.

Disclosures

The authors declare no conflicts of interest.

ORCID iDs

RatanK Saha https://orcid.org/0000-0001-
7274-6707

References

[1] Wang LV andYao J 2016Apractical guide to photoacoustic
tomography in the life sciencesNat.Methods 13 627–38

[2] Attia ABE, BalasundaramG,MoothancheryaM,DinishaU S,
Bia R,Ntziachristos V andOlivoaM2019A review of clinical
photoacoustic imaging: Current and future trends
Photoacoustics 16 100144

[3] Wang LV2009Photoacoustic Imaging and Spectroscopy (Boca
Raton, FL: CRCPress) 37–46Chap. 4

[4] Warbal P, PramanikMand SahaRK2019 Impact of sensor
apodization on the tangential resolution in photoacoustic
tomography J. Opt. Soc. Am.A 36 245–52

[5] ShawCB, Prakash J, PramanikMandYalavarthy PK 2013
Least squareQR-based decomposition provides an efficient
way of computing optimal regularization parameter in
photoacoustic tomography J. Biomed. Opt. 18 080501

[6] Déan-BenXL,Ntziachristos V andRazanskyD2012Accurate
model-based reconstruction algorithm for three-dimensional
optoacoustic tomography IEEETrans.Med. Imag. 31 1922–8

[7] LehmannTM,GonnerC and Spitzer K 1999 Survey:
Interpolationmethods inmedical image processing IEEE
Trans.Med. Imag. 18 1049–75

[8] Hansen PC 2007Regularization Tools Version 4.0 forMatlab
7.3Numer. Algorithms 46 189–94

[9] Prakash J, SannyD,Kalva S K, PramanikMandYalavarthy PK
2019 Fractional regularization to improve photoacoustic
tomographic image reconstruction IEEETrans.Med. Imaging
38 1935–47

[10] Li C, YinW, JiangH andZhang Y 2013An efficient augmented
Lagrangianmethodwith applications to total variation
minimizationComput. Optim. Appl. 56 507–30

[11] Déan-BenXL,Ntziachristos V andRazanskyD2012
Acceleration of optoacousticmodel-based reconstruction
using angular image discretization IEEE Trans.Med. Imag. 31
1154–62

[12] Treeby BE andCox BT 2010 k-wave:MATLAB toolbox for the
simulation and reconstruction of photoacoustic wavefields
J. Biomed. Opt. 15 021314

[13] Prakash R, Badal D, Paul A, SonkerD and SahaRK 2021
Photoacoustic signal simulation using discrete particle
approach and its application in tomography IEEETrans.
Ultrason. Ferroelectr. Freq. Control 68 707–17

[14] SongX, Pogue BW, Jiang S, DoyleyMM,DehghaniH,
TostesonTDand PaulsenKD2004Automated region
detection based on the contrast-to-noise ratio in near-infrared
tomographyAppl. Opt. 43 1053–62

[15] WangZ, Bovik AC, SheikhHR and Simoncelli E P 2004 Image
quality assessment: from error visibility to structural similarity
IEEETrans. Image Process. 13 600–12

[16] BhattM, AcharyaA andYalavarthy PK 2016Computationally
efficient error estimate for evaluation of regularization in
photoacoustic tomography J. Biomed. Opt. 21 106002

[17] BhattM,Gutta S andYalavarthy PK 2016 Exponential filtering
of singular values improves photoacoustic image
reconstruction J Opt. Soc. AmA 33 1785–92

[18] AwasthiN, Kalva S K, PramanikMandYalavarthy PK 2018
Image-guided filtering for improving photoacoustic
tomographic image reconstruction J. Biomed. Opt. 23 091413

[19] AfonsoMV, Bioucas-Dias JM and FigueiredoMAT2010 Fast
image recovery using variable splitting and constrained
optimization IEEETrans. Image Process 19 2345–56

10

Biomed. Phys. Eng. Express 8 (2022) 015019 APaul et al

https://orcid.org/0000-0001-7274-6707
https://orcid.org/0000-0001-7274-6707
https://orcid.org/0000-0001-7274-6707
https://orcid.org/0000-0001-7274-6707
https://orcid.org/0000-0001-7274-6707
https://doi.org/10.1038/nmeth.3925
https://doi.org/10.1038/nmeth.3925
https://doi.org/10.1038/nmeth.3925
https://doi.org/10.1016/j.pacs.2019.100144
https://doi.org/10.1364/JOSAA.36.000245
https://doi.org/10.1364/JOSAA.36.000245
https://doi.org/10.1364/JOSAA.36.000245
https://doi.org/10.1117/1.JBO.18.8.080501
https://doi.org/10.1109/TMI.2012.2208471
https://doi.org/10.1109/TMI.2012.2208471
https://doi.org/10.1109/TMI.2012.2208471
https://doi.org/10.1109/42.816070
https://doi.org/10.1109/42.816070
https://doi.org/10.1109/42.816070
https://doi.org/10.1007/s11075-007-9136-9
https://doi.org/10.1007/s11075-007-9136-9
https://doi.org/10.1007/s11075-007-9136-9
https://doi.org/10.1109/TMI.2018.2889314
https://doi.org/10.1109/TMI.2018.2889314
https://doi.org/10.1109/TMI.2018.2889314
https://doi.org/10.1007/s10589-013-9576-1
https://doi.org/10.1007/s10589-013-9576-1
https://doi.org/10.1007/s10589-013-9576-1
https://doi.org/10.1109/TMI.2012.2187460
https://doi.org/10.1109/TMI.2012.2187460
https://doi.org/10.1109/TMI.2012.2187460
https://doi.org/10.1109/TMI.2012.2187460
https://doi.org/10.1117/1.3360308
https://doi.org/10.1109/TUFFC.2020.3022937
https://doi.org/10.1109/TUFFC.2020.3022937
https://doi.org/10.1109/TUFFC.2020.3022937
https://doi.org/10.1364/AO.43.001053
https://doi.org/10.1364/AO.43.001053
https://doi.org/10.1364/AO.43.001053
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1117/1.JBO.21.10.106002
https://doi.org/10.1364/josaa.33.001785
https://doi.org/10.1364/josaa.33.001785
https://doi.org/10.1364/josaa.33.001785
https://doi.org/10.1117/1.JBO.23.9.091413
https://doi.org/10.1109/TIP.2010.2047910
https://doi.org/10.1109/TIP.2010.2047910
https://doi.org/10.1109/TIP.2010.2047910

	1. Introduction
	2. Theoretical ingredients
	2.1. Reconstruction algorithms
	2.2. Relationship between initial pressure rise and recorded pressure
	2.3. Interpolation schemes

	3. Computational and experimental methods
	3.1. Computational methods
	3.1.1. Forward data simulation
	3.1.2. Image formation
	3.1.3. Computation of image quality metrics

	3.2. Experimental procedure

	4. Image reconstruction results
	4.1. Computational results
	4.2. Experimental results

	5. Discussion and conclusions
	Acknowledgments
	Data availability statement
	Disclosures
	References



