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A B S T R A C T

The effect of sensor directivity on photoacoustic tomography (PAT) image reconstruction is
examined. An analytical expression for the resultant PA signal, when emitted by an ensemble
of spherical sources and detected by a planar sensor with finite aperture, is derived. This
framework was employed to calculate the PA signal produced by a vasculature phantom
containing many randomly distributed spherical sources mimicking the red blood cells (RBCs).
A Monte Carlo algorithm was employed to generate the random locations of RBCs inside
the vasculature. The calculated signals for many detector locations were utilized for image
reconstruction via the Tikhonov regularization method. The corresponding system matrix was
constructed in three ways by considering (i) sensors as point detectors (PDs), (ii) finite
detectors but without directivity (FD WOD), and (iii) finite detectors with directivity (FD
WD). The novelty of this work is to incorporate the effect of sensor directivity during the
signal simulation as well as system matrix formation. The FD WD algorithm provided accurate
image reconstruction while PD and FD WOD failed to recover the vascular structure. Pearson’s
correlation coefficient for the image formed using the FD WD technique was computed to be
≈ 4 times higher than that of the FD WOD method. The simulation results confirm that PAT
imaging becomes independent of transducer directivity with the FD WD approach.

. Introduction

The photoacoustic (PA) imaging couples the advantages of optics and acoustics [1,2]. The PA tomography (PAT) has emerged
s a potential tool for sentinel-lymph node imaging [3,4], small animal brain imaging [5,6], molecular imaging [7,8], vasculature
maging [9,10], breast imaging [11,12] and tumor angiogenesis [13,14]. In PA imaging, tissue containing chromophores absorbs the
ptical energy when irradiated by short laser pulses and emits wide-band acoustic waves. This is because of the rapid thermo-elastic
xpansion of the illuminated region. These PA signals are captured using ultrasound detectors placed around the illuminated tissue.
he recorded signals are then processed to generate the map of the initial pressure distribution. This is called image reconstruction.
he reconstruction algorithms can be analytical as well as model-based. The analytical methods like backprojection (BP) [15–17] and
ime-reversal (TR) [18] algorithms are easy to implement and take less computational time (since they are noniterative in nature)
o produce a reconstructed image. However, these methods are quantitatively less accurate. In general, images are corrupted with
P artifacts (e.g., streak artifact). Full view data set and filtering of the signals are required for faithful image creation reducing
rtifacts [19]. The model-based techniques (e.g., 𝑙2 norm-based Tikhonov (TH) regularization, 𝑙1 norm-based Tikhonov regularization
nd total variation minimization) are applied where limited view data set is available. They are computationally expensive
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(since generation and inversion of the system/model matrix are computationally expensive tasks) [20–23]. These algorithms can
significantly suppress BP and various system-dependent (arising from the finite bandwidth of the transducers, finite apertures of
the detectors, broad pulse width of the laser, acoustically lossy and dispersive medium) artifacts [20]. Therefore, they can facilitate
quantitatively accurate reconstructed images.

Most PAT studies assume that the PA signals are captured by the point detectors having an omni-directional response. However,
his assumption is not valid in practice. A real detector has a finite aperture size and its angular response is not uniform (rather
irection-dependent) [24]. In general, in the far-field, the sensitivity of such a sensor is maximum along its axis and decreases
radually as the angle of the source point increases [24]. This gives rise to banding artifacts in the PAT images [25,26].

The effect of the sensor directivity on PAT imaging is investigated in the present work. For this purpose, we employed the discrete
article approach for signal simulation [27]. Essentially, tissue is hypothesized as an ensemble of discrete PA sources [e.g., blood
an be considered as a collection of red blood cells (RBCs)], which emit PA signals upon illumination by the incident laser beam.
uch a signal can be convolved with the spatial impulse response function (SIRF) of the detector. The linear superposition principle
as been thereafter utilized to calculate the collective signal generated by many sources. Therefore, the effect of directivity of the
ensor is included while simulating the forward data in this procedure. A simple analytical expression for the resultant PA signal
an be derived for this theoretical framework.

Image reconstruction has been performed by implementing the Tikhonov regularization technique. The angular response of each
ensor (of finite size) for each grid point has been incorporated while building the system matrix. This is referred to as FD WD in the
emaining text. The reconstructed images created by this method have been compared with two other variants. In the first case, the
ystem matrix has been formed by assuming detectors as point detectors (PDs). In the other case, only radial distances of the grid
oints from the centers of the sensors (of finite size) have been considered at the time of system matrix formation. This approach
s mentioned as FD WOD in the following sections. Though this scheme considers finite size of the aperture, it does not include
he directivity of the transducer. It is expected that the effect of directivity is canceled out during the matrix inversion process in
he case of FD WD. Hence, the banding artifacts can be removed significantly in the reconstructed images. The effect of transducer
irectivity has also been examined for various scanning radii. To the best of our knowledge, the theoretical framework presented
ere, which incorporates the effect of sensor directivity during the signal simulation as well as system matrix formation, has never
een performed in PAT studies. Therefore, the explicit inclusion of sensor directivity within the computations is the novelty of the
ork.

The organization of the paper is as follows. The forward and inverse frameworks are presented in the next section for signal
imulation and image reconstruction, respectively. The simulation method is detailed in Section 3. Section 4 illustrates the results
btained in this study. The findings of this study are discussed in Section 4. The summary of the conclusions of this work is included
n Section 5.

. Forward and inverse frameworks

.1. PA signal calculation for a finite detector

The PA field at a space point 𝐫 generated by a light-absorbing sphere (with radius 𝑎 and located at 𝐫𝑙) under the conditions of
thermal and stress confinements is given by [1],

𝜓(𝐫) = 𝐵𝐼0

[

[sin(𝑞) − 𝑞 cos(𝑞)]𝑒−𝑖𝑘𝑓 𝑎

𝑞2[(1 − �̂�) sin(𝑞)∕𝑞 − cos(𝑞) + 𝑖�̂��̂� sin(𝑞)]

]

𝑒𝑖𝑘𝑓 |𝐫−𝐫𝑙 |

|𝐫 − 𝐫𝑙|
, (1)

where 𝐵 = 𝑖𝜇𝛽𝑣𝑠𝑎2

𝐶𝑃
. Here, 𝜇, 𝛽, and 𝐶𝑃 represent the optical absorption coefficient, isobaric thermal expansion coefficient, and

specific heat for the absorber; 𝐼0 is the intensity of the incident radiation which is modulated with an angular frequency 𝜔. Further,
𝑣𝑠 and 𝜌𝑠 are the sound-speed and density of the source, respectively. The same quantities for the ambient medium are denoted by
𝑣𝑓 and 𝜌𝑓 , respectively; 𝑘𝑠 = 𝜔∕𝑣𝑠 and 𝑘𝑓 = 𝜔∕𝑣𝑓 refer to the wave numbers inside and outside the PA source, respectively. The
dimensionless quantities are defined as, 𝑞 = 𝑘𝑠𝑎, �̂� = 𝜌𝑠∕𝜌𝑓 , �̂� = 𝑣𝑠∕𝑣𝑓 . If the illuminated region contains 𝐿 number of spherical
absorbers, the resultant PA field can be calculated using the linear superposition principle as,

𝜓(𝐫) =
𝐿
∑

𝑙=1
𝐵𝐼0�̃�(𝜔)

𝑒𝑖𝑘𝑓 |𝐫−𝐫𝑙 |

|𝐫 − 𝐫𝑙|
, (2)

with

�̃�(𝜔) =

[

[sin(𝑞) − 𝑞 cos(𝑞)]𝑒−𝑖𝑘𝑓 𝑎

𝑞2[(1 − �̂�) sin(𝑞)∕𝑞 − cos(𝑞) + 𝑖�̂��̂� sin(𝑞)]

]

.

The corresponding PA signal for a delta function heating pulse becomes,

𝜓(𝐫, 𝑡) =
𝐿
∑ 𝐵𝐹

∫

∞
�̃�(𝜔) 𝑒

𝑖𝑘𝑓 |𝐫−𝐫𝑙 |
𝑒−𝑖𝜔𝑡𝑑𝜔, (3)
2

𝑙=1 2𝜋 −∞ |𝐫 − 𝐫𝑙|
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where 𝐹 is the fluence of the incident optical beam. The signal recorded by a finite detector can be expressed as,

𝑃 (𝑡) = ∫ ∫𝑆𝐴𝑟𝑒𝑎
𝑑2𝐫

𝐿
∑

𝑙=1

𝐵𝐹
2𝜋 ∫

∞

−∞
�̃�(𝜔) 𝑒

𝑖𝑘𝑓 |𝐫−𝐫𝑙 |

|𝐫 − 𝐫𝑙|
𝑒−𝑖𝜔𝑡𝑑𝜔

= 𝐵𝐹
𝐿
∑

𝑙=1
∫

∞

−∞
𝑑𝜔𝑒−𝑖𝜔𝑡�̃�(𝜔)∫ ∫𝑆𝐴𝑟𝑒𝑎

𝑒𝑖𝑘𝑓 |𝐫−𝐫𝑙 |

2𝜋|𝐫 − 𝐫𝑙|
𝑑2𝐫

= 𝐵𝐹
𝐿
∑

𝑙=1
∫

∞

−∞
𝑑𝜔𝑒−𝑖𝜔𝑡�̃�(𝜔)𝐻𝐷(𝜔), (4)

here 𝐻𝐷(𝜔) = ∫ ∫𝑆𝐴𝑟𝑒𝑎
𝑒𝑖𝑘𝑓 |𝐫−𝐫𝑙 |

2𝜋|𝐫−𝐫𝑙 |
𝑑2𝐫 is the directivity function for the finite detector [28]; 𝑆𝐴𝑟𝑒𝑎 is the area of the aperture of the

sensor. Eq. (4) further reduces to,

𝑃 (𝑡) =
𝐿
∑

𝑙=1
[𝑝(𝑡) ∗ ℎ(𝐫𝑙 , 𝑡)], (5)

where ∗ is the convolution operation with,

𝑝(𝑡) = 𝐵𝐹
2𝜋 ∫

∞

−∞
�̃�(𝜔)𝑒−𝑖𝜔𝑡𝑑𝜔, (6)

and

ℎ(𝐫𝑙 , 𝑡) = ∬
𝛿(𝑡 − |𝐫 − 𝐫𝑙|∕𝑣𝑓 )

2𝜋|𝐫 − 𝐫𝑙|
𝑑2𝐫, (7)

is the SIRF of the transducer. In this work, Eq. (5) has been evaluated to calculate the resultant PA signal generated by a uniformly
illuminated collection of light-absorbing spheres.

2.2. Image reconstruction

The PAT image reconstruction problem can be mathematically presented as a system of linear equations as [21],

𝑀U = 𝑃 , 𝑀 ∈ R𝑚×𝑛, 𝑃 ∈ R𝑚 and U ∈ R𝑛 (8)

where 𝑀 is the system/model matrix [27] that retains the properties of the medium, laser source, and acoustic sensors; 𝑃 is a
long column vector containing measured pressure data. Here, U is also a long column vector that essentially contains the spatial
istribution of initial pressure rise within the imaging region due to the absorption of light. It is easy to obtain a unique solution of
q. (8) when 𝑀 is invertible (i.e., 𝑚 = 𝑛, |𝐴| ≠ 0). If this condition is not met (e.g., 𝑚 > 𝑛), a solution can be obtained by deploying
he method of least squares such as,

U𝑠𝑜𝑙 = arg min(‖𝑀U − 𝑃‖22), (9)

here ‖− ‖2 is the 𝑙2 norm. However, for discrete ill-posed problems the conventional methods for numerically solving Eq. (9) may
ot provide meaningful approximate solutions [29].

The standard approach for solving Eq. (8) is to employ the Tikhonov regularization method when 𝑚 ≠ 𝑛 [30]. The solution for
his technique becomes [22],

U𝑠𝑜𝑙 = arg min(‖𝑀U − 𝑃‖22 + 𝜆
2
‖𝑄U ‖

2
2). (10)

ere, 𝜆 is the regularization parameter; 𝑄 ∈ R𝑛×𝑛 is the regularization matrix. It may be an identity matrix such as 𝑄 = 𝐼 or a
igh-pass/difference operator. The first term of the right hand side of Eq. (10) is termed as the fidelity term and the second term
s called the penalty term. It is apparent from Eq. (10) that 𝜆 determines the enforcement of the penalty term while obtaining the
olution. The over smoothening of the image happens at higher regularization whereas, at lower 𝜆 values, noise in the image gets
mplified. The choice of the 𝜆 can be made manually (via visual inspection). It can also be made using some automatic techniques
uch as L-curve, generalized cross-validation (GCV) methods, etc.

The result of the minimization in Eq. (10) for 𝑄 = 𝐼 is written as,

U𝑠𝑜𝑙 = (𝑀𝑇𝑀 + 𝜆2𝐼)−1𝑀𝑇 𝑃 , (11)

here 𝐼 being the identity matrix and 𝑇 is the transpose operator. Eq. (11) can be further manipulated in the following manner to
btain a simple expression. For instance, the singular value decomposition (SVD) of 𝑀 is given as,

𝑀 = 𝑈𝛴𝑉 𝑇 =
𝑛
∑

𝑖=1
𝑢𝑖𝜎𝑖𝑣

𝑇
𝑖 , (12)

hen 𝑚 ≥ 𝑛; 𝑈 = (𝑢1, 𝑢2,… , 𝑢𝑛) and 𝑉 = (𝑣1, 𝑣2,… , 𝑣𝑛) are the left and right orthogonal matrices, respectively; that is 𝑈𝑇𝑈 = 𝑉 𝑇 𝑉 =
𝑛; 𝛴 = diag(𝜎1, 𝜎2,… , 𝜎𝑛) contains the non-negative diagonal elements or singular values in the descending order such that,
3

𝜎1 ≥ 𝜎2 ≥ .... ≥ 𝜎𝑛. (13)
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Substituting Eq. (12) into Eq. (11) we get,

U𝑠𝑜𝑙 = (𝑉 𝛴𝑇𝛴𝑉 𝑇 + 𝜆2𝐼)−1𝑉 𝛴𝑇𝑈𝑇 𝑃

= (𝑉 𝛴𝑇𝛴𝑉 𝑇 + 𝜆2𝑉 𝑉 𝑇 )−1𝑉 𝛴𝑇𝑈𝑇 𝑃

= 𝑉 (𝛴𝑇𝛴 + 𝜆2)−1𝛴𝑇𝑈𝑇 𝑃

=
𝑛
∑

𝑖=1

𝜎𝑖(𝑢𝑇𝑖 𝑃 )

𝜎2𝑖 + 𝜆2
𝑣𝑖. (14)

The term 𝜎𝑖
𝜎2𝑖 +𝜆

2 is called the filter factor. The filter factors remove the contributions from the small singular values, however, those
of large singular values are retained unaffected.

The regularization matrix can be constructed involving a spatial derivative filter [22]. For example, normalized spatial Laplacian
filter can be used having the following kernel [22],

𝐾𝐿 = 1
9

⎡

⎢

⎢

⎢

⎣

−1 −1 −1

−1 8 −1

−1 −1 −1

⎤

⎥

⎥

⎥

⎦

. (15)

In this work, the regularization matrix has been built using the kernel 𝐾𝐿.

3. Simulation method

3.1. Numerical phantom

A binary image of a blood vasculature of size 20 × 20 mm2 was scanned at 600 dots per inch providing 473 × 473 pixels. At
first, the pixels containing the vasculature were identified and tagged as 1; other pixels were assigned as 0. The vasculature covered
an area of ≈ 44 mm2. A total number of 663609 RBCs approximated as spheres (with radius, 𝑎 = 2.92 μm) were randomly placed
within the pixels with tag 1. The random sequential adsorption (RSA) technique, a popular Monte Carlo algorithm for disk/sphere
packing, was used for this purpose [31,32]. The cells did not overlap with other cells inside the same pixel as well as those of
the neighboring pixels. The total area occupied by the RBCs was about 17.8 mm2. Therefore, the hematocrit level became nearly
0.4. The procedure is also detailed in [27,31]. Tissue simulation consumed about 115 s in a virtual machine [CentOS, Intel Core
Processor (Broadwell, IBRS), 2.19 GHz, 256 GB RAM, and 80 cores]. The vasculature phantom is presented in Fig. 1(a). It could be
considered as a 2D sheet of a 3D tissue.

Note that the coordinates of RBCs were initially generated with respect to the X0-Y0 frame. For example, the coordinates for
the 𝑙th cell were denoted by (𝑥𝑐0𝑙 , 𝑦

𝑐
0𝑙) as shown in Fig. 1(b). The coordinates for the same cell relative to the X𝑠-Y𝑠 frame could be

easily obtained and subsequently, those values (𝑥𝑐𝑠𝑙 , 𝑦
𝑐
𝑠𝑙) with respect to the detector D𝑠 were computed. The formula for coordinate

transformation is given below,
[

𝑥𝑐𝑠𝑙
𝑦𝑐𝑠𝑙

]

=

[

𝑟𝑑
0

]

+

[

cos(𝜋 + 𝜃𝑠) sin(𝜋 + 𝜃𝑠)

− sin(𝜋 + 𝜃𝑠) cos(𝜋 + 𝜃𝑠)

][

𝑥𝑐0𝑙
𝑦𝑐0𝑙

]

, (16)

where 𝑟𝑑 is the scanning radius and the detector D𝑠 makes an angle 𝜃𝑠 with the 𝑋-axis of the X0-Y0 frame [see Fig. 1(b)].

3.2. Generation of forward data

The thermo-optomechanical parameters like 𝐼0, 𝜇, 𝛽 and 𝐶𝑃 were taken as unity for each RBC [27]. The sound-speed was chosen
as 𝑣𝑠 = 𝑣𝑓 = 1500 m∕s; the density was fixed to 𝜌𝑠 = 𝜌𝑓 = 1000 kg∕m3. The contributions from a wide range of frequencies (1 to
1000 MHz with an increment of 1 MHz) were considered while evaluating Eq. (6) for a single cell. The PA signal was sampled at
2000 MHz. The sensors were placed at a distance 𝑟𝑑 = 35 mm from the center of the imaging region [see Fig. 1(c)]. The position
coordinates of cells relative to a detector could be determined by employing Eq. (16). After that, a long vector of length 100000 × 1
was initialized with zeros. The SIRF for each cell was computed sequentially at the same sampling frequency for that detector and
added to this vector. The xdc_piston and calc_h functions of Field II were utilized for this purpose [33]. Subsequently, the PA signal
for a single RBC was convolved with this long vector to generate the PA signal by the vasculature structure. This signal was filtered
with a cosine Gabor filter mimicking the frequency response of a transducer with 2.25 MHz as the center frequency and 70% as the
bandwidth. The next step was to downsample the PA signal 40 times [27]. This procedure was followed for 100 detector positions.
The PA signals were simulated for two detectors with a diameter of 6 mm (computation time ≈ 2 hr 20 min) and 12 mm (execution
time ≈ 13 h). The impact of the directivity of the sensor while collecting the tiny signals emitted by the individual cells was thus
incorporated in this approach.
4
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Fig. 1. (a) Vasculature phantom considered in this study. Inset displays the spatial organization of some cells/spheres belonging to the pink box. The pixels
marked by red and green boxes represent the region of interest and background, respectively. Image profile has been generated along the golden line. (b)
Cells are randomly distributed in space. X0-Y0 is the initial coordinate system and X𝑠-Y𝑠 is the coordinate system for the detector D𝑠. (c) Schematic for PAT
reconstruction. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

3.3. Image creation

The entire imaging region was divided into 101 × 101 grid points with 𝑑𝑥 = 𝑑𝑦 = 200 μm [see Fig. 1(c)]. Initially, the PA signal
generated by a spherical source with 50 μm as the radius was calculated. The SIRF for a grid point and for a particular detector
was also computed after the appropriate coordinate transformation. The convolution between this signal and SIRF was performed
to obtain the PA signal generated by that grid point. Subsequently, this high-frequency signal was filtered and downsampled. The
PA signals from all grid points for that detector were calculated and loaded into the 𝑀 matrix. These steps were also followed for
all detectors. In this manner, the 𝑀 matrix was built for the FD WD method. The generation time for 𝑀 matrix for 100 detectors
was about 2 h 40 min for 6 mm and 3 h for 12 mm transducer. This protocol took care of the angular response of each sensor
for each grid point while building the 𝑀 matrix. The initial pressure rise was then estimated via Eq. (10). The cgsvd, l_curve, and
tikhonov functions of the regularization toolbox were deployed for this purpose [29]. Image reconstructions were also performed
for two other cases (PD and FD WOD) for comparison as stated earlier. For the PD scheme, the scaling and shifting properties of the
PA signal (i.e., filtered and downsampled PA signal generated by the 50 μm sphere) were utilized for the formation of the 𝑀 matrix
(hence, the finite aperture size and directivity effect were not included in this approach). For the FD WOD case, we essentially
followed the same procedure as that of the FD WD technique for the construction of the 𝑀 matrix. However, only radial distances
of the grid crossings from the centers of the sensors were considered while calculating the SIRFs. Therefore, the directivity factor
was ignored in this case.

3.4. Quantitative comparison of reconstruction methods

Improving the quality of a digital image can be subjective. For example, claiming that one reconstruction method provides
better images than the other can differ from one person to another. For this reason, image quality metrics have been developed to
quantitatively assess the image enhancement algorithms [34]. Here, some commonly used image quality parameters were calculated
to compare the performance of the reconstruction techniques [27]. For example, error norm (ERN), Pearson’s correlation coefficient
(PCC), and signal-to-noise ratio (SNR) were determined.

3.4.1. Error norm (ERN)
The ERN can be computed using the following relation,

ERN = ‖U − U𝑠𝑜𝑙‖2, (17)

where U and U are the nominal and reconstructed values, respectively. When U and U are identical, the ERN becomes zero.
5
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Fig. 2. Normalized (by the maximum pressure value) reconstructed images for the 6 mm transducer with scanning radius, 𝑟𝑑 = 35 mm — (a) for point detector
(PD), (b) for finite detector without considering directivity (FD WOD) and (c) for finite detector with directivity factor (FD WD). The numerical value of 𝜆 is
given at the bottom of each figure. (d) The line plots along the golden line [see Fig. 1(a)] for the source and reconstructed images. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

3.4.2. Pearson’s correlation coefficient (PCC)
The PCC is a measure of similarity between the ground truth and the reconstructed image. It can be calculated as,

PCC =
COV(U ,U𝑠𝑜𝑙)
𝜎U 𝜎U𝑠𝑜𝑙

, (18)

where COV, 𝜎U , and 𝜎U𝑠𝑜𝑙
are the covariance between U and U𝑠𝑜𝑙 image matrices, standard deviation of U and standard deviation

of U𝑠𝑜𝑙, respectively. The PCC value ranges from −1 to 1. Better reconstructions have PCC values closer to 1.

3.4.3. Signal to noise ratio (SNR)
The SNR is defined as,

SNR = 20 log10 ( 𝐴
𝜎𝑏𝑎𝑐𝑘

), (19)

where 𝐴 is the peak pressure value in ‘roi’ and 𝜎𝑏𝑎𝑐𝑘 represents the standard deviation of ‘back’. The ‘roi’ and ‘back’ [red and green
regions as shown in Fig. 1(a)]. These areas spanned over 16 and 121 pixels, respectively.

4. Simulation results

Reconstructed images provided by the three methods (PD, FD WOD, and FD WD) are displayed in Fig. 2(a)–(c), respectively for
the 6 mm sensor. Each figure is normalized by its maximum pressure value. The numerical value of the regularization parameter 𝜆 is
given at the bottom of each figure. The respective line plots along the golden line [as given in Fig. 1(a)] are shown in Fig. 2(d). The
same plot for the ground truth is also included in this figure for comparison. It is visually clear from Fig. 2 that image reconstructed
using the FD WD method is of much better quality compared to those of PD and FD WOD protocols. Significant blurring occurs
in the case of PD. Though the FD WOD scheme works well in the central region but fails to reproduce the vascular structure in
the peripheral region. The background noise is significantly less in Fig. 2(c) than those in Fig. 2(a) and (b). In Fig. 2(d), good
agreement in terms of peak matching between the FD WD and source lines (black and magenta lines, respectively) can be observed.
Nevertheless, the lines for the PD (blue line) and FD WOD (red line) techniques do not exhibit a good match with the source line.
The PA signal appears to have spread in the case of PD and FD WOD indicating the presence of blurring in the images. This blur
was not present in the FD WD case. Similarly, the reconstructed images and line plots for the 12 mm transducer are included in
Fig. 3. Here also, the FD WD provides faithful reconstruction. The bar charts in Fig. 4(a)–(c) show quantitative comparisons of the
reconstruction methods. It can be seen that ERN is comparable for these methods [Fig. 4(a)]. However, PCC and SNR are remarkably
higher for the FD WD with respect to the other methods (particularly, FD WOD) [see Fig. 4(b) and (c)]. This is true for both the
transducers.
6
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Fig. 3. Demonstration of the reconstructed images (normalized) for the 12 mm transducer (scanning radius, 𝑟𝑑 = 35 mm) — (a) for point detector (PD), (b) for
finite detector without taking into account directivity (FD WOD) and (c) for finite detector with directivity factor (FD WD). The numerical value of optimum 𝜆
is included at the bottom of each figure. (d) Comparison of image profiles drawn along the golden line [see Fig. 1(a)] for the original and reconstructed images.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Comparison of the error norm in (a), Pearson’s correlation coefficient in (b), and the signal to noise ratio in (c) for different reconstruction schemes
(PD, FD WOD, and FD WD) for both the transducers.

The reconstructed images have also been generated by varying the scanning radius of the sensors. The images (a)–(i) in Fig. 5 are
the normalized images reconstructed using the PD, FD WOD, and FD WD methods, respectively (arranged in columns 1–3) for the
6 mm transducer. These images are placed from rows 1–3 for scanning radii- 𝑟𝑑 = 25, 45 and 55 mm, respectively. The corresponding
line plots are presented in Fig. 5(j)–(l) [drawn along the golden line in Fig. 1(a)]. It is visually evident from the images (column 1)
that the directivity effect is dominant for smaller scanning radius i.e. 𝑟𝑑 = 25 mm as compared to that of 45 and 55 mm radii. The
branches of the vasculature phantom in the peripheral regions are better reconstructed for a larger scanning radius [see Fig. 5(g)
and (h)]. The line plots [Fig. 5(j), (k), and (h)] also verify the same. The images in Fig. 6 are the same as those of Fig. 5 but
reconstructed for the 12 mm transducer. The same trends can be observed. Nevertheless, the effect of directivity for the 12 mm
detector is higher compared to that of the 6 mm transducer. The numerical study using the same image quality metrics ERN, PCC,
and SNR have also been analyzed (data not shown). The numerical values are consistent with our findings.

5. Discussion and conclusions

A vasculature phantom was made using a Monte Carlo algorithm for sphere packing. For a sparse medium (i.e., in the
physiological hematocrit level), it is a very fast method for blood tissue simulation. However, the RSA method may become slow for
a dense system (e.g., when hematocrit is ≥ 0.5). The structural details of the tissue at the cellular level are retained in this approach.
It also provides position coordinates of individual cells and thus exact calculation of SIRF corresponding to each cell is possible.
Moreover, thermo-optomechanical properties, size, and shape parameters of individual sources can be incorporated during signal
simulation. The convolution sum realistically models signal recording by a transducer with finite aperture. Therefore, it is a robust
7
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Fig. 5. (a)–(i) Normalized reconstructed images (columns 1–3 for PD, FD WOD, and FD WD methods, respectively) arranged in rows 1–3 for scanning radii
𝑟𝑑 = 25, 45 and 55 mm, respectively. The corresponding line plots for these radii are given in (j)–(l) (drawn along the golden line in Fig. 1(a)) for the 6 mm
transducer. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

framework for the forward signal simulation. Similarly, the PA response of each grid point for such a transducer can be faithfully
(by including directivity factor) estimated and that can be loaded into the system matrix. It is intuitively expected that the effect
of sensor directivity would be canceled out during matrix inversion procedure and hence PAT image reconstruction free from the
negative effect of sensor directivity may be possible.
8
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Fig. 6. Same as Fig. 5 but for the 12 mm transducer.

It is well known that significant blurring in the reconstructed images occurs for sensors with finite aperture size. However, it
can be reduced significantly by increasing the scanning radius [see images (a), (d) and (g) of Figs. 5 and 6]. The simulation results
presented herein are in accordance with this observation. Moreover, image blurring is less [see images (b), (e) and (h) of Figs. 5
and 6] for the FD WOD method compared to that of the PD scheme. In addition to that, image formation improves gradually as
the scanning radius increases for the same method (i.e., peripheral regions of the vasculature structure are reproduced in a better
9
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manner when the scanning radius is large). The negative effects of finite aperture size and directivity are both nullified in the case
of FD WD protocol and it works well for all scanning radii [see images (c), (f) and (i) of Figs. 5 and 6].

As discussed earlier, a transducer with a finite aperture has two important properties — (i) the angular (the angle made by the
osition vector corresponding to a field point with respect to the axis of the transducer) response is not uniform and this is due to the
iffraction phenomenon and (ii) it converts a narrow input pulse into a broad output pulse owing to the finite size of the aperture.
herefore, the impacts of these factors (depending upon the transducer used) are always embedded within a captured signal. The
D method assumed the detectors as point sensors with an omni-directional response to the incoming acoustic signals. Therefore,
he PD method was unable to nullify the above mentioned effects during the image reconstruction and produced blurred images.
he second factor was included while building the 𝑀 matrix for the FD WOD method (but the first factor was not incorporated).

That is why the FD WOD approach fairly recovered the vascular structure at the central region but failed for the peripheral regions
(where the directivity effect is prominent). The FD WD method considered both the aspects while constructing the 𝑀 matrix and
that is why created significantly blur-free images. As implemented in this study, the 𝑀 matrix for the FD WD scheme can be formed
theoretically for the transducer in use (based on its specifications). The response of a transducer can be measured experimentally
(e.g., utilizing a hydrophone) and accordingly, the 𝑀 matrix can be built. Such a model matrix may facilitate system-independent
image reconstruction.

In this work, the Tikhonov regularization method has been applied for image reconstruction. This approach has been extensively
utilized by various groups [22,30]. Nevertheless, other algorithms such as 𝑙1 regularization and total variation minimization
techniques have also been employed for sparse data set and for improved image generation [30]. Most recently, it has been reported
that fractional regularization can even provide better image reconstruction [30]. We plan to use these methods in the future and
also attempts may be made to experimentally validate the findings of this study.

The proposed protocol emerges as a much superior method for PAT image reconstruction and outperforms other schemes. It can
be confirmed through visual inspection of the reconstructed images (see Figs. 2 and 3) as well as from Fig. 4. For example, PCC and
SNR values for FD WD are nearly 4 and 2 times higher than that of FD WOD, respectively. The simulation results suggest that the
FD WD technique presented here can be utilized in practice for generating PAT images independent of transducer directivity.
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