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ABSTRACT:
The purpose of the paper is twofold. First, a modified Green’s function (MGF) approach is described for solving the

time-independent inhomogeneous optoacoustic (OA) wave equation. The performance of this technique has been

assessed with respect to the exact, traditional Born series and convergent Born series methods for an acoustically

inhomogeneous spherical source. Second, we apply the same approach for calculating time domain signal from a

blood vessel network consisting of an ensemble of acoustically homogeneous/inhomogeneous randomly positioned

disks resembling cells. The predicted signals have been compared with those generated by the exact method and a

freely available standard software. The OA spectra for a spherical source demonstrated excellent agreement with the

exact results when sound-speed for the source was varied from �20% to 30% compared to that of the surrounding

medium. The simulated OA signals also followed the same trend as that of the exclusively used software for the

acoustically homogeneous blood vessel network. Future work will focus inclusion of a suitable phase factor within

the MGF facilitating OA pulses building up at correct temporal locations for an acoustically inhomogeneous source.
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I. INTRODUCTION

The production of acoustic waves due to absorption of

light is known as the optoacoustic/photoacoustic (OA/PA)

effect. Essentially, short pulses of a laser beam irradiate a

tissue. The tissue undergoes thermoelastic expansion, which

results in emission of pressure waves. A biomedical imaging

modality has been developed based on this phenomenon. It

enjoys the advantages of optics and acoustics. Imaging of

deep tissue regions with optical contrast at ultrasonic resolu-

tion is possible using this technique.1–3 Currently, it operates

in two modes—microscopy and tomography. On one hand,

the OA microscopic technique focuses to image single cells,

micro-vasculature, etc. On the other hand, the OA tomo-

graphic imaging attempts to form images of organs. Both

the anatomical and functional information of the illuminated

region can be gathered using these methods.

The generation and propagation of OA waves can be

expressed using a time-dependent wave equation (under

thermal and stress confinements). It can be easily converted

into its time-independent form.4 The time-independent OA

wave equation is inherently an inhomogeneous Helmholtz

equation. The right-hand side of this equation retains a term

(i.e., the source term) and it is responsible for conversion of

light energy into acoustic energy. The source term is non-

zero inside the OA source, which may be acoustically

homogeneous or inhomogeneous compared to the surround-

ing medium. An additional source term appears on the right-

hand side in the wave equation for an inhomogeneous OA

source accounting its mismatch in the sound-speed with

respect to the ambient medium. The mismatch in sound-

speed acts as a scattering potential. For example, sound-

speed in red blood cells is approximately 10% higher than

that of saline water and accordingly, scattering potential

becomes nonvanishing.

The solutions to the time-independent inhomogeneous

OA wave equation can be analytically obtained for objects

with regular shapes (e.g., layer, infinite cylinder, sphere,

etc.).4 It is called the exact method. This procedure has been

explored by us for computing OA signals from an ensemble

of red blood cells approximated as spheres.5 Two variants of

the Born series method, referred to as the traditional Born

series (TBS) and convergent Born series (CBS), have been

applied to solve the same equation. Essentially, the OA field

generated by an acoustically inhomogeneous disk was calcu-

lated using these techniques.6,7 The Born series methods have

been employed in optical scattering problems and also for

seismic wavefield modelling in strongly scattering media.8–11

The TBS procedure has been found to offer converging solu-

tions when particle size and scattering potential are small.

However, it cannot facilitate converging solutions if particle

size and scattering potential are large. The CBS scheme pro-

vides converging solutions for arbitrarily large media.8 The

main advantage of these protocols is that OA fields can be

computed for sources with irregular shapes. The major prob-

lem of these techniques is that they are computationally

extensive and take a long time to numerically solve the wave

equation (since they employ iterative approaches).

The Green’s function (GF) method has been widely

used by us to solve the OA wave equation for acoustically

homogeneous sources mimicking biological targets.12–15a)Electronic mail: ratank.saha@iiita.ac.in, ORCID: 0000-0001-7274-6707.
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Various form factor models have been subsequently tested

in order to extract the size and shape information of the

source from the OA spectrum.14 Mohajerani et al., calcu-

lated the OA field produced by an extended illuminated

region based on the GF approach and consequently, carried

out image reconstruction. The modality is termed as the fre-

quency domain OA tomography.16,17 Baddour and Mandelis

proposed a transfer function approach to solve inhomoge-

neous problems in OAs, and performed image reconstruc-

tions as well.18,19 The time-dependent OA wave equation

can also be solved numerically using the k-Wave toolbox

which implements the pseudospectral method.20 This tool-

box has been extensively utilized in many studies.

Chu et al. used a modified GF (MGF) along with the

Born approximation for solving the corresponding wave

equation describing scattering process by a soft target in

under water acoustics.21 In this case, the acoustic property

(i.e., sound-speed) of the OA source is incorporated within

the GF while modeling the wave propagation inside the

source. They revealed that it works well for predicting the

scattered field generated by Zooplankton. This approach is

referred to as the distorted wave Born approximation in the

literature. We also implemented this approximation for

investigating angular distributions of ultrasound scattering

by soft targets resembling cells.22

The objective of the paper is to apply the MGF technique

to solve the OA wave equation when sound-speed within a

source (a spherical region) is different than that of the sur-

rounding medium. Further, in this work, we consider the

source term of the OA wave equation only (ignoring the term

involving the scattering potential) and accordingly, compute

the OA field using the MGF scheme and compare its perfor-

mance with other methods. It is a very fast method and pro-

vides accurate estimation of the OA fields emitted by a

spherical source with sound-speed contrast varying from

�20% to 30%. The OA signal from an acoustically homoge-

neous/inhomogeneous solid disk has also been computed

exploiting the MGF approach and thereafter the resultant sig-

nal from a blood vessel network in 2D (simulated by using a

Monte Carlo algorithm by randomly placing solid disks imi-

tating cells) has been calculated by linearly adding tiny sig-

nals from the individual disks. Such a simulated signal have

been compared with those of exact and k-Wave methods.

The organization of the paper is as follows. Theoretical

formulas are derived in Sec. II. The numerical methods for

calculating the OA fields and time domain signals utilizing

various frameworks and for different phantoms are presented

in Sec. III. The simulation results are detailed elaborately in

Sec. IV. Some important aspects of this study are highlighted

in Sec. V. It also includes the conclusions of this study.

II. GOVERNING EQUATIONS

A. Exact analytical method

Consider a region that can absorb light and is embedded

in an optically nonabsorbing fluid medium. The correspond-

ing time-independent OA wave equation can be written as4

r2wðrÞ þ k2
s wðrÞ ¼

ilbI0x
CP

within the source; (1a)

r2wðrÞ þ k2
f wðrÞ ¼ 0 in the surrounding medium;

(1b)

where l, b, and CP denote the optical absorption coefficient,

isobaric thermal expansion coefficient, and specific heat for

the absorbing region, respectively; ks and kf indicate the

wave numbers inside and outside the OA source, respec-

tively. Here, x and I0 are the modulation frequency and the

intensity of the incident light beam, respectively. A sche-

matic diagram is shown in Fig. 1. The assumptions of ther-

mal and stress confinements have been made while deriving

Eq. (1). The OA source is acoustically inhomogeneous with

respect to the surrounding medium (sound-speed is not the

same), however, its physical properties do not vary spatially.

Moreover, it is uniformly illuminated by the incident light

beam.

The analytical solutions to Eq. (1) can be readily

derived for regular objects (e.g., layer, infinite cylinder,

sphere, etc.). Essentially, both equations are solved in an

appropriate coordinate system and then the pressure and

normal components of the particle velocity are matched

at the boundary.4 It works for any inhomogeneity of arbi-

trary strength (without size restriction). The OA field at a

point r (outside the source) for a sphere of radius a
becomes4

wexðrÞ¼
ilbI0xa3

CP

eikf ðr�aÞ

r

� sinðq̂Þ� q̂ cosðq̂Þ½ �
q̂3 ð1� q̂Þsinðq̂Þ=q̂�cosðq̂Þþ iq̂ĉ sinðq̂Þ½ �

" #
:

(2)

Here, the dimensionless quantities are defined as q̂ ¼ ksa;
q̂ ¼ qs=qf , and ĉ ¼ cs=cf . The density and sound-speed of

the source region are indicated by qs and cs, respec-

tively. The same quantities for the ambient medium are

denoted by qf and cf, respectively. The subscript “ex”

states the exact solution. In this work, Eq. (2) has been

evaluated to compute the OA pressure produced by a

spherical source.

FIG. 1. (Color online) Demonstration of the OA set up.
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B. Approximate methods

The OA wave equation as expressed in Eq. (1) after

rearrangement of terms can be cast as8

r2wðrÞ þ ðk2
f þ i�ÞwðrÞ ¼ �SðrÞ � VðrÞwðrÞ; (3)

where

SðrÞ ¼ � ilbIox
Cp

if jrj � a;

0 if jrj > a

8<
: (4)

and

VðrÞ ¼
k2

s � k2
f � i� if jrj � a;

�i� if jrj > a;

(
(5)

with SðrÞ and VðrÞ being the source term and the scattering

potential, respectively. Similar equations can be found in

acoustical, optical, and potential scattering problems.23–25

The perturbation theory has been extensively used to solve

these equations.25 This method derives an approximate solu-

tion of a complex system in terms of a simple/known solu-

tion. It can give us sufficient insight regarding the

dependence of the system on various parameters.

In this work, we use the GF method for solving Eq. (3).

The numerical value of � may be chosen as 0 or a small real

number. These two cases are studied in detail in the

following.

1. Case I (�5 0)

In this case, the solution to Eq. (3) becomes

wðrÞ ¼
ð

Vvol

g1ðrjr0Þ Sðr0Þ þ Vðr0Þwðr0Þ½ �d3r0; (6)

where the integration is carried out over the volume of the

source Vvol and g1ðrjr0Þ is the free space GF. The corre-

sponding Helmholtz equation for g1ðrjr0Þ is26

r2g1ðrjr0Þ þ k2
f g1ðrjr0Þ ¼ �dðr� r0Þ: (7)

Here, d is the Dirac delta function and g1ðrjr0Þ can be

obtained as26

g1ðrjr0Þ ¼
eikf jr�r0j

4pjr� r0j
: (8)

Equation (6) states that one needs to know the field inside

the source in order to find out the same quantity outside the

source. In reality, it is not known a priory posing a difficulty

for performing the calculation. The standard approach is to

start with an approximate field and expand Eq. (6) recur-

sively to make accurate estimation of wðrÞ.
If the magnitude of the scattering potential is small, the

contribution from the second term (i.e., the scattering

potential) may be neglected and recursive expansion of

Eq. (6) is not required. Further, the free space GF in three

dimensions in the far field (i.e., jrj � jr0j) becomes

g1ðrjr0Þ �
eikf r

4pr
e�ikf �r0 ; (9)

where kf defines the direction of measurement (see Fig. 1)

and hence the solution becomes

wgf ðrÞ � �
ð

Vvol

ilbIox
Cp

eikf r

4pr
e�ikf �r0 d3r0

¼ � ilbIoxa3

Cp

sin ðkf aÞ � kf a cos ðkf aÞ
� �

k3
f a3

eikf r

r
;

(10)

where the subscript gf represents the GF. Note that this

approach treats the source region as acoustically homoge-

neous compared to the surrounding medium (i.e., sound-

speed contrast is equal to zero).

Chu et al., in the context of acoustic scattering by

Zooplankton, approximated the GF in the following manner:21

g1ðrjr0Þ �
eikf r

4pr
e�iks�r0 : (11)

This approach included the acoustical property of the

inhomogeneity efficiently compensating the phase mis-

match arising due to sound-speed contrast and provided

accurate prediction of frequency dependent backscatter

amplitude.21,22 This is referred to as the MGF in the text.

For such a GF, one calculates

wmgf ðrÞ � �
ð

Vvol

ilbIox
Cp

eikf r

4pr
e�iks�r0 d3r0

¼ � ilbIoxa3

Cp

sin ðksaÞ � ksa cos ðksaÞ½ �
k3

s a3

eikf r

r
:

(12)

It is interesting to note that this approach reproduces approx-

imately the same solution as that of the exact method [com-

pare Eqs. (2) and (12)]. In this work, Eqs. (10) and (12) have

been computed to estimate the OA pressure generated by a

spherical source.

2. Case II (� 6¼ 0)

The solutions given in Eqs. (10) and (12) are far field

solutions. Therefore, in general, they may not be suitable if

measurement is carried out close to the source. Furthermore,

the contribution of the scattering potential arising from the

sound-speed mismatch has been ignored. In order to address

these issues, we chose � 6¼ 0 and proceed in the following

manner.

In this case, the solution to Eq. (3) becomes

wðrÞ ¼
ð

Vvol

g2ðrjr0Þ Sðr0Þ þ Vðr0Þwðr0Þ½ �d3r0; (13)
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where g2ðrjr0Þ obeys

r2g2ðrjr0Þ þ ðk2
f þ i�Þg2ðrjr0Þ ¼ �dðr� r0Þ; (14)

obtaining

g2ðrjr0Þ ¼
e

i
ffiffiffiffiffiffiffiffi
k2

f
þi�

p
jr�r0j

4pjr� r0j
: (15)

Note that g2ðrjr0Þ decays exponentially with distance for

finite � and thus represents the GF for lossy unbounded

medium. The corresponding expression in the Fourier

domain in terms of Fourier transformed coordinates (p)

becomes

~g2ðpÞ ¼
1

ðjpj2 � k2
f � i�Þ

: (16)

The convolution sum presented in Eq. (13) can be cast

in the matrix form yielding

w ¼ GSþ GVw; (17)

where G ¼ F�1 ~g2ðpÞF , with F and F�1 as the forward

and inverse Fourier transform operators, respectively.

Equation (17) can be recursively expanded providing

wTBS ¼ 1þ GV þ GVGV þ � � �½ �GS: (18)

This is the well-known TBS. The infinite series converges if

GV is less than unity.8 The TBS method is capable of pro-

viding reliable solutions to the inhomogeneous Helmholtz

equation for small objects having weak scattering potential.

Equation (18) has been calculated herein numerically to esti-

mate the OA pressure produced by a light absorbing sphere.

Let us consider that both sides of Eq. (17) are multiplied

by a preconditioner c and thus one attains8

cw ¼ cGVwþ cGS: (19)

Equation (19) after rearrangement of terms can be written

as

wCBS ¼ MwCBS þ cGS; (20)

where M ¼ cGV � cþ 1. Similar to Eq. (18), an infinite

series can also be derived through recursive expansion of

Eq. (20) as

wCBS ¼ 1þM þM2 þ � � �½ �cGS: (21)

The above series converges if M< 1. It has been

shown that this infinite series converges for all structures

when c ¼ ði=�ÞVðrÞ and � 	 maxjk2
s � k2

f j.
8 The CBS tech-

nique essentially extends the validity domain of the TBS

method facilitating converging results for large structures as

well.8 Equation (21) has been applied herein to compute the

OA field generated by an acoustically homogeneous/

inhomogeneous source.

III. NUMERICAL IMPLEMENTATION

A. Computation of OA pressure for a spherical source

1. Physical properties of the source

The OA field was computed for a homogeneous sphere

of radius a¼ 5 lm and at a distance r¼ 15.5 lm from the

center of the source. This OA source essentially mimicked a

cell. Note that studies on OA emission from single cells

may play a vital role to develop an OA technology for cell

characterization.14 The density for the source and the sur-

rounding medium was fixed at qs ¼ qf ¼ 1000 kg/m3. The

sound-speed of the ambient medium was chosen as

cf¼ 1500 m/s. These numerical values are similar to those of

tissue media.6,7 The sound-speed for the source region was

gradually decreased from cs¼ 1950 to 1200 m/s with a dec-

rement of 150 m/s. Therefore, sound-speed of the source

region was varied from 30% to �20% compared to the sur-

rounding medium. This range was arbitrarily fixed. The

thermo-opto-mechanical parameters were taken as constants

such as I0 ¼ 1, l¼ 1, b¼ 1, CP¼ 1. The magnitudes of

these parameters do not change the features of the OA spec-

trum rather control its amplitude.

2. Contribution from the source term only

The OA pressure was calculated over a large frequency

band from f¼ 29.3 to 1552.7 MHz with a step size of

29.3 MHz. The lower limit of the frequency band was deter-

mined from the size of the computational domain. Many OA

experiments in the single cell level were carried out in the

GHz range and based on this, the upper limit was fixed.27

Equations (2), (10), and (12) were computed to obtain the

OA pressure for the exact GF and MGF methods, respec-

tively, for a spherical source.

3. Implementation of the Born series methods

The details an implementation of the Born series meth-

ods (for 2D) can be found in the literature.6,7 However, for

the sake of completeness the same has been briefly

described here (for 3D). The three-dimensional computa-

tional domain was discretized into 512� 512� 512 voxels

with grid size dx ¼ dy ¼ dz ¼ 100 nm. The numerical value

for � was considered as � ¼ 0:6k2
f .7 Note that this choice sat-

isfied � 	 maxjk2
s � k2

f j for all cases (i.e., when sound-speed

varied from cs¼ 1950 to 1200 m/s). The spatial distributions

of the source and the scattering regions were initialized as

per Eqs. (4) and (5), respectively. The source was placed at

the central region of the computational domain (see Fig. 2).

The GF (in the frequency domain) was evaluated at each

grid point as per Eq. (16) and was stored in a 3D matrix.

The initial pressure values in the two methods were taken as

wTBS0
ðrÞ ¼ ifft3 ~g2ðpÞfft3SðrÞ

� �
(22)

and

wCBS0
ðrÞ ¼ cðifft3 ~g2ðpÞfft3SðrÞ

� �
Þ; (23)

4042 J. Acoust. Soc. Am. 149 (6), June 2021 Ratan K. Saha

https://doi.org/10.1121/10.0005041

https://doi.org/10.1121/10.0005041


respectively. Here, fft3 and ifft3 represent forward and

inverse fast Fourier transforms in 3D. All the multiplications

were performed element wise.

The iterative computation was started after that. For

example, the pressure values at the grid points at the

ðnþ 1Þth step were calculated using those values of the nth

step in the following manner:

wTBSnþ1
ðrÞ ¼ ifft3 ~g2ðpÞfft3 SðrÞ þ VðrÞwTBSn

ðrÞ
� �� �

;

(24)

in the case of the TBS algorithm. The same procedure was

also adapted for the CBS algorithm as given below:

wCBSnþ1
ðrÞ ¼ wCBSn

ðrÞ � ði=�ÞVðrÞ
�
wCBSn

ðrÞ

�ifft3 ~g2ðpÞfft3 SðrÞ þ VðrÞwCBSn
ðrÞ

� �� ��
:

(25)

It might be mentioned here that after each step the pres-

sure values were multiplied by an attenuation mask

defined as

AtnMskðrÞ ¼ e�
ffiffi
�
p
jrj if jrj lies within the ABL;

1 otherwise:

(

(26)

Here, ABL means the absorbing layer (see Fig. 2).

Therefore, wnþ1 was multiplied by AtnMskðrÞ and the prod-

uct was considered as the input for Eq. (24) or for Eq. (25).

In other words, wn was updated as, wn ¼ AtnMskwnþ1. The

pressure waves were absorbed within the absorbing layer

and thus reflection of the waves could not occur from

the boundaries. Moreover, it greatly suppressed the

effect of periodic boundary conditions inherently embed-

ded in the implementation of the fast Fourier transform

algorithm. After each iteration total error was

determined,

Total error¼
X512

m¼1

jwnþ1ð256;m;256Þ �wnð256;m;256Þj
jwnð256;m;256Þj :

(27)

The iterative procedure was stopped when the total error

became � 10�4. It was also stopped if this condition was

not met even after 1500 steps. The numerical codes imple-

menting the TBS and CBS algorithms were written in

MATLAB. The codes were executed in a virtual machine

[CentOS, Intel Core Processor (Broadwell, IBRS)] working

at 2.19 GHz, with 256 GB RAM and 80 cores. Sample codes

(for 2D) can be found elsewhere.28

B. Computation of OA signal for a blood vessel
network

The next step was to calculate the OA signal gener-

ated by a blood vessel network in the framework of the

MGF. The blood vessel network was assumed to be filled

with solid disks (mimicking erythrocytes). The OA signals

from individual disks were simulated and summed up to

obtain the resultant signal. The procedure is detailed

below.

1. Construction of a blood vessel network

At first a binary image of a blood vessel network was

scanned at 600 dots per inch. The scanned area was

20� 20 mm2 and the matrix size was 473� 473 with pixel

size dx ¼ dy ¼ 42:33 lm. A numerical value of 1 was

assigned to the grid points inside the blood vessel and 0 was

tagged otherwise. The number of grid points inside the

blood vessel was found to be 19 215 out of 223 729 points.

Therefore, the area covered by the blood vessel was about

34.4 mm2. This area was populated with solid disks with

radius a ¼ 2:75 lm. The number of disks was N¼ 579 762

so that the hematocrit level became about 0.4. These disks

were placed within the blood vessel randomly using a

Monte Carlo technique known as the random sequential

adsorption technique.29–31 Essentially, the entire image was

divided into 473 rectangular strips with area

20 000� 42:33 lm2. The pixels belonging to the blood ves-

sel within each strip were filled up with the disks. The disks

were placed in such a way that they did not overlap. The

disks situated at a boundary of a strip also maintained the

nonoverlapping condition with those of the adjacent strip. In

this way, the coordinates of the disks were generated and

utilized while computing the OA signal. A MATLAB code was

written for this purpose. The execution time was about 80 s

in the same virtual machine.

Figure 3 displays the constructed blood vessel which

mimics well the actual structure. The figure in inset exhibits

spatial organization of some particles situated within the

blue box. It essentially demonstrates the discrete particle

nature of the vessel. This approach retains the structural

details of the blood vessel network in the cellular level.

FIG. 2. (Color online) Schematic of the computational domain in 2D.
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2. OA signal calculation

The MGF in 2D far away from the source point is given

by

g1ðrjr0Þ �
i

4

ffiffiffiffiffiffiffiffiffi
2

pkf r

s
eiðkf r�p=4Þe�iks�r0 : (28)

Accordingly, the OA field generated by a solid disk can be

calculated as

wdisk
mgf ðrÞ � �

ð
Aarea

ilbIox
Cp

i

4

ffiffiffiffiffiffiffiffiffi
2

pkf r

s
eiðkf r�p=4Þe�iks�r0 d2r0

¼ lbIox
4Cp

ffiffiffiffiffiffiffi
2

pkf

s
2paJ1ðksaÞ

ks

eiðkf r�p=4Þffiffi
r
p ; (29)

where J1 is the Bessel function of the first kind of order

unity; a is the radius of the disk and the integration is carried

out over the area of the source (Aarea). Consider that there

are L number of disks within the region of interest and all of

them are uniformly illuminated by the incident laser beam.

The corresponding OA signal for a delta function heating

pulse can be computed as

wmany�disks
mgf ðr; tÞ � lbF

4Cp

ð1
�1

XL

l¼1

" ffiffiffiffiffiffiffi
2

pkf

s
aJ1ðksaÞ

ks

� xe�ikf �rl
eiðkf r�xt�p=4Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jr� rlj

p
#

dx; (30)

where F is the fluence of the incident light beam. The acous-

tic inhomogeneity of each source is taken into consideration

in this approach. Equation (30) provides the theoretical

framework for calculating the OA signal for a collection of

disks randomly positioned in a blood vessel network.

The OA signals for such an extended source were com-

puted at four detector locations (i.e., at D1, D2, D3, and D4)

for r¼ 50 mm. At first the OA signal was calculated for a

source particle and stored as a reference signal. The frequen-

cies contributed to the signal were taken as 1 kHz to

1000 MHz with a step of 10 kHz. The sampling frequency

was chosen as 2000 MHz providing the sampling interval as

dt¼ 0.5 ns. The signals for all other particles were computed

by using proper scaling and shifting of the reference OA sig-

nal. All such signals were linearly added to obtain the resul-

tant signal. The resultant signal was filtered using a cosine

Gabor filter which mimicked the frequency response of a

transducer with centre frequency of 5 MHz and 70% as the

�6 dB bandwidth and then decimated 40 times. Final sam-

pling interval became dt¼ 20 ns. The OA signals were cal-

culated and stored for two cases, cs¼ 1500 and 1800 m/s,

respectively. The OA signal was stored from t¼ 0 to 60 ls.

Similar signals were also generated using the exact method

for comparison.29

3. OA signal computation with the k-Wave toolbox

The binary image of the same blood vessel network was

loaded in the k-Wave simulation toolbox. The computa-

tional domain was taken as 1101� 1101 pixels with dx ¼
dy ¼ 100 lm. The perfectly matched layer was 2 mm thick.

The center frequency and �6 dB bandwidth of the sensors

were fixed at 5 MHz and 70%, respectively. The effective

sound-speed for the source region was assigned to be

ceff¼ 1500 and 1600 m/s for the first and second cases,

respectively. It could be defined in terms of density (qeff)

and compressibility (jeff) as ceff ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiqeff jeff
p

. For the sec-

ond case, the density and compressibility were taken as

qeff ¼ 1000 kg/m3 and jeff ¼ 0:4jdisk þ 0:6jmedium ¼ 3:90

�10�10 m2/N, where jdisk ¼ 3:09� 10�10 m2/N and jmedium

¼ 4:44� 10�10 m2/N. The OA signals for these two settings

were computed and compared with those of the previous

approaches. The sampling interval was found to be dt¼ 20

and 18.75 ns in these two cases, respectively, so that the

Courant-Friedrichs-Lewy number became fixed at 0.3. It

can be mentioned here that k-Wave results are not depen-

dent on the choice of numerical parameters (e.g., dx and dt).

IV. NUMERICAL RESULTS

Figure 4 displays how the OA pressure amplitude gen-

erated by a spherical source (radius, a¼ 5.0 lm) varies with

frequency over a bandwidth� 29 to 1550 MHz. The sound-

speed of the source region was gradually changed from

cs¼ 1950 to 1200 m/s in (a) to (f), respectively, with a dec-

rement of 150 m/s. However, the same quantity for the

ambient medium was fixed at cf¼ 1500 m/s. The OA spectra

provided by the exact, TBS, CBS, GF, and MGF methods

are drawn in each figure. Further, each figure is split into

two panels to improve the clarity of each image. It can be

seen from Figs. 4(b1)–4(e1) [i.e., the upper panel in each

figure] that the TBS and CBS methods provide accurate esti-

mates of the OA pressure over the entire frequency range.

FIG. 3. (Color online) Construction of the blood vessel network phantom

using the Monte Carlo method. The inset exhibits spatial distribution of a

small number of particles located inside the blue box. The solid dots repre-

sent point detectors positioned at D1, D2, D3, and D4 locations.
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The TBS technique cannot produce converging results when

cs¼ 1950 m/s and f 	 908 MHz as shown in Fig. 4(a1).

Similar observation can also be made when cs¼ 1200 m/s

and f 	 352 MHz [see Fig. 4(f1)]. In other words, the TBS

algorithm remains valid when the size parameter remains

kf a < 19 and 7, respectively. The CBS protocol still stands

valid and thus extends the validity of the Born series

method. It may also be mentioned here that the number of

oscillations increases as the sound-speed of the source

region is decreased [compare Figs. 4(a1) and 4(f1)].

Figures 4(a2)–4(f2) [i.e., the lower panel in each figure]

confirm that magnitudes and locations of peaks and dips of

the OA lines provided by the MGF scheme demonstrate per-

fect match with those of the exact technique. This is true for

all sound-speed mismatch conditions. The minima positions

in case of the GF method appear slightly earlier if cs> cf

and little later if cs< cf than those of the exact procedure.

For example, the first peak occurs at 88 MHz earlier and

30 MHz later than those of the exact curve in Figs. 4(a2) and

4(f2), respectively.

The OA signals generated by the blood vessel network

and captured at two detector locations (D3 and D4, see

Fig. 3) are shown in Fig. 5. Figures 5(a1) and 5(a2) present

the OA signals computed using the exact and MGF methods,

respectively. Both the signals (from acoustically inhomoge-

neous and homogeneous blood vessels) are shown in each

figure. The signals are not visually distinguishable and the

one is lying on the other. However, the signals provided by

the k-Wave technique are not overlapping (marked by the

black arrows) at all time points as shown in Fig. 5(a3). This

is expected because sound-speeds inside the source in these

cases are not the same. The OA signals recorded at the D4

location are shown in Figs. 5(b1), 5(b2), and 5(b3) and

similar observations can be made. Overall agreement

between the exact and MGF results validates the later

method.

It is clear from the above that the OA spectra and sig-

nals for the exact and MGF methods agree well. However,

the OA signals (for these techniques) differ with respect to

those of the k-Wave method (see Fig. 5). We have studied

this aspect in details and the results are shown in Fig. 6.

Essentially, the OA signal measured at a distance 5 cm from

the center of an inhomogeneous source (a disk with radius,

a¼ 5 mm) has been compared with that of a homogeneous

disk in each method. Figure 6(a) shows that the OA signals

from the front surface for these sources occur at the same

location but the second pulse for the inhomogeneous disk

leads a bit than that of the homogeneous disk. This is

expected because sound-speed inside the source region is

higher than that of the extra cellular matrix for the inhomo-

geneous source. The pulses (for the inhomogeneous disk)

computed by the MGF method appear little later/earlier for

the front/back surface in comparison to that of the homoge-

neous disk as shown in Fig. 6(b). The k-Wave signals mani-

fest better match with the exact signals [compare Figs. 6(a)

and 6(c)] in comparison to the MGF scheme.

V. DISCUSSION AND CONCLUSIONS

In this work, an MGF approach has been deployed to

solve the time-independent inhomogeneous OA wave equa-

tion. This equation arises in practice if the sound-speed of

the source region differs from those of the ambient medium.

The MGF retains a term which includes the acoustic prop-

erty (i.e., sound-speed) of the source so that wave propaga-

tion inside the inhomogeneity becomes medium dependent.

FIG. 4. (Color online) Plots of the OA spectra computed for a spherical source (with radius, a¼ 5.0 lm) under different sound-speed contrast conditions.

(a)–(f) Sound-speed for the source region was decreased from cs¼ 1950 to 1200 m/s, respectively, but cf was fixed at cf¼ 1500 m/s. The graphs for the exact,

TBS, and CBS methods are presented in the upper panel in each figure [(a1)–(f1)]; the same for the GF and MGF techniques along with the exact method

are drawn in the lower panel in each figure [(a2)–(f2)]. The scale for the TBS algorithm is along the right y axis in (a1) and (f1).
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The OA spectra provided by the MGF and exact techniques

exhibit excellent match for a spherical source (see Fig. 4). It

has been observed that the TBS method can facilitate a con-

verging result up to kfa¼ 32 if mismatch in sound-speed is

>� 11% and <21%. The CBS scheme works faithfully

even beyond these limits.

The exact GF and MGF methods took less than 10 ms

to compute an OA spectrum for a spherical source. The exe-

cution time for the TBS algorithm (for 512� 512� 512 as

the size of the computational domain) was about 31 h, 7 h,

4 h 50 min, 4 h 40 min, 5 h 20 min, and 54 h for cs¼ 1950,

1800, 1650, 1500, 1350, and 1200 m/s, respectively. The

same quantity for the CBS scheme was approximately 6 h

18 min, 5 h 30 min, 5 h 45 min, 6 h, 5 h, and 7 h 25 min,

respectively. The average time for each k-Wave simulation

was nearly 12 h 30 min (nearly 11 h 30 min, 14 h 30 min,

12 h 20 min, 11 h 30 min, 11 h 54 min, and 13 h 55 min,

respectively). We executed the k-Wave simulations for the

same computational domain to compare calculation effi-

ciency of different methods, but the corresponding OA

spectra have not been shown in this work. The frequency

content of OA signals provided by the k-Wave method was

much greater than the Born series algorithms. The MGF

approach is undoubtedly preferable for rapid computation of

the OA field.

A limitation of the MGF method is that the pulses (cor-

responding to the boundaries of the source) do not appear at

the same locations as those of the exact method. It occurs

because of an inherent deficiency of this approach.21 It fails

to predict the imaginary part of the OA spectrum. The vol-

ume integration in Eq. (12) provides a real quantity and thus

does not contain any phase part which results in small shift-

ing of the pressure pulses in the time domain [compare Figs.

6(a) and 6(b)]. However, the k-Wave software regenerates

the exact result in a better manner [compare Figs. 6(a) and

6(c)]. Chu et al. designed a phase compensated distorted

wave Born approximation method so that phase part could

be restored well.21 A similar approach may be adapted in

OAs too in future facilitating accurate estimation of the time

domain signal.

FIG. 5. (Color online) Comparison of the OA signals collected from the blood vessel network phantom. (a1)–(a2) Plots of the OA signal generated by the

exact and MGF methods, respectively and detected at the D3 location (for the inhomogeneous source—cs¼ 1800 m/s and cf¼ 1500 m/s; for the homoge-

neous source—cs ¼ cf ¼ 1500 m/s). (a3) Same as (a1) but for the k-Wave technique, respectively (for the inhomogeneous source—ceff¼ 1600 m/s and

cf¼ 1500 m/s; for the homogeneous source—ceff ¼ cf ¼ 1500 m/s). (b1)–(b3) Same as (a1)–(a3), respectively, but the signals are recorded by the detector

placed at D4. Two black arrows in (a3) and (b3) represent the approximate locations where the signals from the inhomogeneous source precedes than that of

the homogeneous source.

FIG. 6. (Color online) (a) Simulated OA signals using the exact method for a source (disk) with a¼ 5 mm and computed at a distance 5 cm from the center

of the source. For the inhomogeneous source, cs¼ 1800 m/s and for the homogeneous source, cs¼ 1500 m/s. In both cases, the source is surrounded by a

medium with cf¼ 1500 m/s. (b)–(c) Same as (a) but generated by the MGF approach and the k-Wave toolbox, respectively.
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The amount of shift of the OA pulse from the distal sur-

face of the source (from the detector) is distinguishably visi-

ble in Fig. 6 because we considered sufficiently large object

with 20% sound-speed contrast compared to the surrounding

medium. Analogous change may not be visible for a small

object (e.g., disk mimicking an erythrocyte) for which

pulses from the boundaries would be overlapping. It may be

speculated that because of this reason no deviation in the

resultant OA signal is observed for the inhomogeneous

source compared to that of the homogeneous source [see

Figs. 5(a1), 5(a2), 5(b1), and 5(b2)]. However, the OA sig-

nal computed by the k-Wave method for the inhomogeneous

source exhibits a small deviation compared to that of homo-

geneous source [see Figs. 5(a3) and 5(b3), marked by the

black arrows]. This is expected because the k-Wave toolbox

splits the source region into pixels which are extended

objects compared to a disk resembling an erythrocyte.

The Monte Carlo method known as the random sequen-

tial adsorption technique was implemented herein to create

a blood vessel network phantom. In this scheme, each eryth-

rocyte was modeled as a solid disk and was placed randomly

within the blood vessel. Once a disk was positioned inside

the vessel, via a valid throw, the coordinates of the disk

became fixed and fine tuning of its location was not possi-

ble. Tissue simulation using this approach works well for

sparse medium, however, may become difficult for a dense

medium (e.g., at 50% hematocrit). The Metropolis algorithm

can also be used to construct a tissue realization.32 In this

algorithm, the position coordinates of the disks are continu-

ously updated in order to achieve minimum energy state and

thus provides an efficient way for tissue simulation. In gen-

eral, OA signal simulation by exploiting the discrete particle

approach (i.e., linearly superimposing the tiny signals from

the individual disks) in conjunction with tissue simulation

exploring the Monte Carlo technique offers an alternative

and faster way with respect to the extensively used k-Wave

toolbox method.

As mentioned earlier, many groups are trying to

develop an imaging modality referred to as the frequency

domain OA tomography. It has several advantages over the

conventional time domain OA tomography.16,17 So far theo-

retical/numerical studies related to frequency domain OA

tomography have considered acoustically homogeneous

region of interest only and therefore, the simple GF

approach has been good enough for evaluating the OA field

around the imaging region. We anticipate that the MGF

method can be deployed for dealing imaging regions with

heterogeneous sound-speed distribution and computing

accurate OA fields. Furthermore, in this work, we simulated

the OA spectra of a spherical source under various sound-

speed contrast conditions (see Fig. 4). However, we

neglected scattering of the incident light beam while calcu-

lating the OA fields for such micron-sized objects. It would

be interesting in future to study the impact of light scattering

on OA emission by such a source.

In conclusion, in this work, we apply an MGF

approach to solve the inhomogeneous OA wave equation

(i.e., sound-speed of the source region differs from that of

the ambient medium). This approach incorporates acoustic

property of the source region while modeling the wave prop-

agation inside the source. It considers the contribution of the

source term only (ignoring the contribution from the scatter-

ing potential) when calculating the pressure field generated

by an OA source. The computed OA spectra for a spherical

source have been compared with the corresponding results

provided by the exact, Born series, and GF methods. The

simulated OA spectra for the MGF protocol exhibit perfect

match with those of the exact method when sound-speed

contrast of the source medium is varied from �20% to 30%

with respect to the surrounding medium. Therefore, accurate

and rapid estimation of the OA pressure field is possible

using this approach for an acoustically inhomogeneous

source. Further investigation is required to introduce addi-

tional phase factor within the MGF so that time domain OA

signal features can be produced at appropriate temporal

locations.
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