
Chapter 4
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At the ith stage:
Input:
ci is the carry-in
Output:
si is the sum
ci+1 carry-out to (i+1)st

state
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Full Adder (FA): Symbol for the complete circuit 
                          for a single stage of addition.



•Cascade n full adder (FA) blocks to form a n-bit adder.
•Carries propagate or ripple through this cascade, n-bit ripple carry adder.
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Carry-in c0 into the LSB position provides a convenient way to
perform subtraction.



K n-bit numbers can be added by cascading k n-bit adders.
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Each n-bit adder forms a block, so this is cascading of blocks.
Carries ripple or propagate through blocks, Blocked Ripple Carry Adder 
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•Recall X – Y is equivalent to adding 2’s complement of Y to X.
•2’s complement is equivalent to 1’s complement + 1.
•X – Y = X + Y + 1
•2’s complement of positive and negative numbers is computed similarly.
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•Add/sub control = 0, addition.
•Add/sub control = 1, subtraction.



Detecting overflows
Overflows can only occur when the sign of the two 

operands is the same. 
Overflow occurs if the sign of the result is different 

from the sign of the operands.
Recall that the MSB represents the sign.

xn-1, yn-1, sn-1 represent the sign of operand x, operand y 
and result s respectively.

Circuit to detect overflow can be implemented by 
the following logic expressions:
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Consider 0th stage:
x0

y0

c0
c1

s0

FA

•c1 is available after 2 gate delays.
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Cascade of 4 Full Adders, or a 4-bit adder

•s0 available after 1 gate delays, c1 available after 2 gate delays.
•s1 available after 3 gate delays, c2 available after 4 gate delays.
•s2 available after 5 gate delays, c3 available after 6 gate delays.
•s3 available after 7 gate delays, c4 available after 8 gate delays.

For an n-bit adder, sn-1 is available after 2n-1 gate delays
                                    cn is available after 2n gate delays.



Recall the equations:
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Second equation can be written as:
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•Gi is called generate function and Pi is called propagate function
•Gi and Pi are computed only from xi and yi and not ci, thus they can 
 be computed in one gate delay after X and Y are applied to the 
inputs of an n-bit adder.



ci 1  Gi  Pici

ci  Gi 1  Pi 1ci 1

 ci1  Gi  Pi(Gi 1  Pi 1ci 1)

continuing

 ci1  Gi  Pi(Gi 1  Pi 1(Gi  2  Pi 2ci 2 ))
until

ci1  Gi  PiGi 1  PiPi1Gi 2  ..  PiPi 1..P1G0  PiPi 1...P0c0

•All carries can be obtained 3 gate delays after X, Y and c0 are 
applied.
      -One gate delay for Pi and Gi

       -Two gate delays in the AND-OR circuit for ci+1

•All sums can be obtained 1 gate delay after the carries are 
computed.
•Independent of n, n-bit addition requires only 4 gate delays.
•This is called Carry Lookahead adder.



Carrylookahead logic
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Carry lookahead adder 
(contd..)Performing n-bit addition in 4 gate delays independent of 

n is good only theoretically because of fan-in constraints.

Last AND gate and OR gate require a fan-in of (n+1) for a 
n-bit adder. 
For a 4-bit adder (n=4) fan-in of 5 is required.
Practical limit for most gates.  

In order to add operands longer than 4 bits, we can 
cascade 4-bit Carry-Lookahead adders. Cascade of Carry-
Lookahead adders is called Blocked Carry-Lookahead 
adder.

 

ci1  Gi  PiGi 1  PiPi1Gi 2  ..  PiPi 1..P1G0  PiPi 1...P0c0





c4  G3  P3G2  P3P2G1  P3P2 P1G0  P3P2 P1P0c0

Carry-out from a 4-bit block can be given as:

Rewrite this as:

P0
I  P3P2 P1P0

G0
I  G3  P3G2  P3P2G1  P3P2P1G0

Subscript I denotes the blocked carry lookahead and identifies the block.

Cascade 4 4-bit adders, c16 can be expressed as:
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Carrylookahead logic

4bit adder 4bit adder 4bit adder 4bit adder
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After xi, yi and c0 are applied as inputs:
  - Gi and Pi for each stage are available after 1 gate delay.
  - PI is available after 2  and GI after 3 gate delays.
  - All carries are available after 5 gate delays.
  - c16 is available after 5 gate delays.
  - s15 which depends on c12 is available after 8 (5+3)gate delays 
     (Recall that for a 4-bit carry lookahead adder, the last sum bit is
     available 3 gate delays after all inputs are available)





Product of 2 n-bit numbers is at most a 2n-bit number. 

Unsigned multiplication can be viewed as addition of shifted 
versions of the multiplicand.



Multiplication of unsigned 
numbers (contd..)

We added the partial products at end.
Alternative would be to add the partial products at each 

stage.

Rules to implement multiplication are:
 If the ith bit of the multiplier is 1, shift the multiplicand 

and  add the shifted multiplicand to the current value of 
the partial product. 

Hand over the partial product to the next stage
Value of the partial product at the start stage is 0.
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Multiplicand is shifted by displacing it through an array of adders.

Combinatorial array multiplier



Combinatorial array 
multiplier (contd..)
Combinatorial array multipliers are:

 Extremely inefficient.
 Have a high gate count for multiplying numbers of practical size 

such as 32-bit or 64-bit numbers. 
 Perform only one function, namely, unsigned integer product. 

Improve gate efficiency by using a mixture of 
combinatorial array techniques and sequential 
techniques requiring less combinational logic. 



Sequential multiplication
Recall the rule for generating partial products:

 If the ith bit of the multiplier is 1, add the appropriately shifted 
multiplicand to the current partial product. 

 Multiplicand has been shifted left when added to the partial 
product.

However, adding a left-shifted multiplicand to 
an unshifted partial product is equivalent to 
adding an unshifted multiplicand to a right-
shifted partial product.
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Signed Multiplication
Considering 2’s-complement signed operands, what will 

happen to (-13)(+11) if following the same method of 
unsigned multiplication? 

Sign extension of negative multiplicand.
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Signed Multiplication
For a negative multiplier, a straightforward 

solution is to form the 2’s-complement of both 
the multiplier and the multiplicand and 
proceed as in the case of a positive multiplier.

This is possible because complementation of 
both operands does not change the value or 
the sign of the product.

A technique that works equally well for both 
negative and positive multipliers – Booth 
algorithm.



Booth Algorithm
Consider in a multiplication, the multiplier is 

positive 0011110, how many appropriately 
shifted versions of the multiplicand are added 
in a standard procedure?
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Booth Algorithm
Since 0011110 = 0100000 – 0000010, if we 

use the expression to the right, what will 
happen?
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Booth Algorithm
In general, in the Booth scheme, -1 times the shifted 

multiplicand is selected when moving from 0 to 1, and +1 
times the shifted multiplicand is selected when moving 
from 1 to 0, as the multiplier is scanned from right to left.

Booth recoding of a multiplier.

001101011100110100

00000000 1+ 111+11+11+11+



Booth Algorithm

Booth multiplication with a negative multiplier.
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Booth Algorithm
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Booth Algorithm
Best case – a long string of 1’s (skipping over 1s)
Worst case – 0’s and 1’s are alternating
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Bit-Pair Recoding of 
MultipliersBit-pair recoding halves the maximum number 

of summands (versions of the multiplicand).

1+1

(a)  Example of bitpair recoding derived from Booth recoding

0

000

1 1 0 1 0
Implied 0 to right of LSB

1

0

Sign extension

1

21 





Bit-Pair Recoding of 
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Bit-Pair Recoding of 
Multipliers
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Figure 6.15.  Multiplication requiring only n/2 summands.



Carry-Save Addition of 
SummandsCSA speeds up the addition process.
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Carry-Save Addition of 
Summands(Cont.,)

P3 P2 P1 P0P5 P4P7 P6



Carry-Save Addition of 
Summands(Cont.,)

Consider the addition of many summands, we 
can:

 Group the summands in threes and perform carry-save 
addition on each of these groups in parallel to generate a 
set of S and C vectors in one full-adder delay

 Group all of the S and C vectors into threes, and perform 
carry-save addition on them, generating a further set of S 
and C vectors in one more full-adder delay

 Continue with this process until there are only two vectors 
remaining

 They can be added in a RCA or CLA to produce the desired 
product



Carry-Save Addition of 
Summands

Figure 6.17.  A multiplication example used to illustrate carrysave addition as shown in Figure 6.18.
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Figure 6.18. The multiplication example from Figure 6.17 performed using
carrysave addition.
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Manual Division

 Longhand division examples.
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Longhand Division 
StepsPosition the divisor appropriately with respect to 

the dividend and performs a subtraction.
If the remainder is zero or positive, a quotient bit 

of 1 is determined, the remainder is extended by 
another bit of the dividend, the divisor is 
repositioned, and another subtraction is 
performed.

If the remainder is negative, a quotient bit of 0 is 
determined, the dividend is restored by adding 
back the divisor, and the divisor is repositioned 
for another subtraction.



Circuit Arrangement

Figure 6.21. Circuit arrangement for binary division.
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Restoring Division
Shift A and Q left one binary position
Subtract M from A, and place the answer back 

in A
If the sign of A is 1, set q0 to 0 and add M back 

to A (restore A); otherwise, set q0 to 1
Repeat these steps n times



Examples

10111

Figure 6.22. A restoringdivision example.
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Nonrestoring Division
Avoid the need for restoring A after an 

unsuccessful subtraction.
Any idea?
Step 1: (Repeat n times)
 If the sign of A is 0, shift A and Q left one bit 

position and subtract M from A; otherwise, shift A 
and Q left and add M to A.

Now, if the sign of A is 0, set q0 to 1; otherwise, 
set q0 to 0.

Step2: If the sign of A is 1, add M to A



Examples

 A nonrestoringdivision example.
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If b is a binary vector, then we have seen that it can be interpreted as 
an unsigned integer by:

V(b) = b31.231 + b30.230 + bn3.229 + .... + b1.21 + b0.20 

This vector has an implicit binary point to its immediate right:

b31b30b29....................b1b0.         implicit binary point

Suppose if the binary vector is interpreted with the implicit binary point is
just left of the sign bit: 

implicit binary point   .b31b30b29....................b1b0

The value of b is then given by:

V(b) = b31.21 + b30.22 + b29.23 + .... + b1.231 + b0.232 



The value of the unsigned binary fraction is:

V(b) = b31.21 + b30.22 + b29.23 + .... + b1.231 + b0.232 

The range of the numbers represented in this format is:

In general for a n-bit binary fraction (a number with an assumed  binary
point at the immediate left of the vector), then the range of values is:

9999999998.021)(0 32  bV

nbV  21)(0



•Previous representations have a fixed point. Either the point is to 
the immediate right or it is to the immediate left. This is called  
Fixed point representation.
•Fixed point representation suffers from a drawback that the 
representation can only represent a finite range (and quite small) 
range of numbers.

A more convenient representation is the scientific 
representation, where 
the numbers are represented in the form:

x  m1.m2m3m4  be

Components of these numbers are:

Mantissa (m), implied base (b), and 
exponent (e)



A number such as the following is said to have 7 significant digits

x  0.m1m2m3m4m5m6m7  be

Fractions in the range 0.0 to 0.9999999 need about 24 bits of precision 
(in binary). For example the binary fraction with 24 1’s:

111111111111111111111111  = 0.9999999404

Not every real number between  0 and 0.9999999404 can be 
represented
by a 24-bit fractional number.
The smallest non-zero number that can be represented is:

000000000000000000000001 = 5.96046 x 108 

Every other non-zero number is constructed in increments of this 
value.



•In a 32-bit number, suppose we allocate 24 bits to represent a fractional 
mantissa.
•Assume that the mantissa is represented in sign and magnitude format, 
and we have allocated one bit to represent the sign.
•We allocate 7 bits to represent the exponent, and assume that the 
exponent is represented as a 2’s complement integer. 
•There are no bits allocated to represent the base, we assume that the 
base is implied for now, that is the base is 2.
•Since a 7-bit 2’s complement number can represent values in the range 
-64 to 63, the range of numbers that can be represented is:

0.0000001 x 264    < =  | x | <=  0.9999999 x 263

•In decimal representation this range is:

0.5421 x 1020    < =  | x | <=  9.2237 x 1018



Sign            Exponent                                              Fractional mantissa
bit

 1                        7                                                                                          24

•24-bit mantissa with an implied binary point to the immediate left
•7-bit exponent in 2’s complement form, and implied base is 2.



If the number is to be represented using only 7 significant mantissa digits,
 the representation ignoring rounding is:

Consider the number:x =  0.0004056781 x 1012

x = 0.0004056 x 1012 

If the number is shifted so that as many significant digits are brought into 
7 available slots: x = 0.4056781 x 109  =  0.0004056 x 1012

Exponent of x  was decreased by 1 for every left shift of x.

A number which is brought into a form so that all of the available mantissa 
digits are optimally used (this is different from all occupied which may 
not hold), is called a normalized number.

Same methodology holds in the case of binary mantissas

0001101000(10110) x 28 =  1101000101(10) x 25  



•A floating point number is in normalized form if the most significant 
1 in the mantissa is in the most significant bit of the mantissa.
•All normalized floating point numbers in this system will be of the form:

0.1xxxxx.......xx

Range of numbers representable in this system, if every number must be 
normalized is:

0.5 x 264  <= | x |  < 1 x 263  



The procedure for normalizing a floating point number is:
            Do (until MSB of mantissa = = 1)
                   Shift the mantissa left (or right)
                   Decrement (increment) the exponent by 1
            end do

Applying the normalization procedure to:.000111001110....0010  x 262  

gives: .111001110........            x 265  

But we cannot represent an exponent of –65, in trying to normalize the
number we have underflowed our representation.

Applying the normalization procedure to:1.00111000............x 263  

gives: 0.100111..............x 264

This overflows the representation.



So far we have assumed an implied base of 2, that is our  floating point 
numbers are of the form:

x = m 2e 

If we choose an implied base of 16, then:

x = m 16e 

Then:

y = (m.16) .16e1 (m.24) .16e1 = m . 16e = x

•Thus, every four left shifts of a binary mantissa results in a decrease of 1 
in a base 16 exponent.
•Normalization in this case means shifting the mantissa until there is a 1 in 
the first four bits of the mantissa.



•Rather than representing an exponent in 2’s complement form, it 
turns out to be more beneficial to represent the exponent in excess 
notation.
•If 7 bits are allocated to the exponent, exponents can be 
represented in the range of -64 to +63, that is:-64 <= e <= 63

Exponent can also be represented using the following coding called 
as excess-64:

E’ =  Etrue + 64

In general, excess-p coding is represented as:

E’ =  Etrue + p

True exponent of -64 is represented as 0
                              0   is represented as 64
                             63  is represented as 127

This enables efficient comparison of the relative sizes of two floating 
point numbers.



IEEE Floating Point notation is the standard representation in use. 
There are two representations:
        - Single precision.
         - Double precision.
Both have an implied base of 2. 
Single precision:
   - 32 bits (23-bit mantissa, 8-bit exponent in excess-127 representation)
Double precision:
   - 64 bits (52-bit mantissa, 11-bit exponent in excess-1023 representation) 
Fractional mantissa, with an implied binary point at immediate left.

Sign        Exponent                                               Mantissa
1                  8 or 11                                              23 or 52



•Floating point numbers have to be represented in a normalized 
form to 
maximize the use of available mantissa digits.
•In a base-2 representation, this implies that the MSB of the 
mantissa is
always equal to 1. 
•If every number is normalized, then the MSB of the mantissa is 
always 1.
We can do away without storing the MSB. 
•IEEE notation assumes that all numbers are normalized so that 
the MSB 
of the mantissa is a 1 and does not store this bit. 
•So the real MSB of a number in the IEEE notation is either a 0 or a 
1. 
•The values of the numbers represented in the IEEE single 
precision 
notation are of the form: 

(+,-) 1.M x 2(E - 127)

•The hidden 1 forms the integer part of the mantissa.
•Note that excess-127 and excess-1023 (not excess-128 or 
excess-1024)  are used to represent the exponent.



In the IEEE representation, the exponent is in excess-127 (excess-1023)
notation. 
The actual exponents represented are:

-126 <= E <= 127   and   -1022 <= E <= 1023
not
-127 <= E <= 128   and   -1023 <= E <= 1024 

This is because the IEEE uses the exponents -127 and 128 (and -1023 and 
1024), that is the actual values 0 and 255 to represent special conditions:
         - Exact zero
         - Infinity      



Addition:
3.1415 x 108 + 1.19 x 106  = 3.1415 x 108  + 0.0119 x 108 = 3.1534 x 108

Multiplication:
3.1415 x 108  x 1.19 x 106  = (3.1415 x 1.19 ) x 10(8+6)

Division:
3.1415 x 108  / 1.19 x 106    = (3.1415 / 1.19 ) x 10(8-6)

Biased exponent problem:
If a true exponent e is represented in excess-p notation, that is as e+p.
Then consider what happens under multiplication:

a. 10(x + p) * b. 10(y + p)  = (a.b). 10(x + p + y +p) = (a.b). 10(x +y + 2p)

Representing the result in excess-p notation implies that the exponent
should be x+y+p. Instead it is x+y+2p. 
Biases should be handled in floating point arithmetic.  



Floating point arithmetic: 
ADD/SUB rule
Choose the number with the smaller 

exponent.
Shift its mantissa right until the exponents of 

both the numbers are equal. 
Add or subtract the mantissas. 
Determine the sign of the result. 
Normalize the result if necessary and 

truncate/round to the number of mantissa 
bits.Note: This does not consider the possibility of overflow/underflow.



Floating point arithmetic: 
MUL rule
Add the exponents.
Subtract the bias. 
Multiply the mantissas and determine the sign 

of the result. 
Normalize the result (if necessary). 
Truncate/round the mantissa of the result. 



Floating point arithmetic: 
DIV rule
Subtract the exponents 
Add the bias. 
Divide the mantissas and determine the sign 

of the result. 
Normalize the result if necessary. 
Truncate/round the mantissa of the result. 

Note: Multiplication and division does not require alignment of the 
mantissas the way addition and subtraction does. 



While adding two floating point numbers with 24-bit mantissas, we shift 
the mantissa of the number with the smaller exponent to the right until
the two exponents are equalized. 
This implies that mantissa bits may be lost during the right shift (that is,
bits of precision may be shifted out of the mantissa being shifted). 
To prevent this, floating point operations are implemented by keeping 
guard bits, that is, extra bits of precision at the least significant end 
of the mantissa. 
The arithmetic on the mantissas is performed with these extra bits of 
precision. 
After an arithmetic operation, the guarded mantissas are:
     - Normalized (if necessary)
     - Converted back by a process called truncation/rounding to a 24-bit
       mantissa.



Truncation/rounding
Straight chopping:

 The guard bits (excess bits of precision) are dropped.

Von Neumann rounding:
 If the guard bits are all 0, they are dropped. 
 However, if any bit of the guard bit is a 1, then the LSB of the 

retained bit is set to 1. 

Rounding:
 If there is a 1 in the MSB of the guard bit then a 1 is added to 

the LSB of the retained bits.



Rounding
Rounding is evidently the most accurate 

truncation method.
However,

 Rounding requires an addition operation. 
 Rounding may require a renormalization, if the addition 

operation de-normalizes the truncated number. 

IEEE uses the rounding method.

0.111111100000 rounds to 0.111111 + 0.000001
=1.000000 which must be renormalized to 0.100000
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