
ECE4680 Lec4 MIPS.1 February 6, 2002

ECE4680
Computer Organization & Architecture

MIPS Instruction Set Architecture

Why is MIPS a good example?
Learn ISA further by this example.

How does IS fill up the gap between HLL and machine?

ECE4680 Lec4 MIPS.2 February 6, 2002

RISC Vs. CISC

°Determined by VLSI technology.
°Software cost goes up constantly. To be convenient for programmers.
°To shorten the semantic gap between HLL and architecture without

advanced compilers.
°To reduce the program length because memory was expensive.
°VAX 11/780 reached the climax with >300 instructions and >20 addressing modes.

°Things changed: HLL, Advanced Compiler, Memory size, …
°Finding: 25% instructions used in 95% time.
°Size: usually <100 instructions and <5 addressing modes.
°Other properties: fixed instruction format, register based, hardware control…
°Gains: CPI is smaller, Clock cycle shorter, Hardware simpler, Pipeline easier
°Loss: Program becomes longer, but memory becomes larger and larger,

cheaper and cheaper. Programmability becomes poor, but people use HLL
instead of IS.
°Result: although program is prolonged, the total gain is still a plus.

RISC����CISC

CISC����RISC

ECE4680 Lec4 MIPS.3 February 6, 2002

MIPS R2000 / R3000 Registers
°32-bit machine --> Programmable storage x bytes
°31 x 32-bit GPRs (R0 = 0)
°32 x 32-bit FP regs (f0 - f31, paired DP)
°HI, LO, PC: SPRegisters
°Big Endian
°2 nomenclatures(next slide)

°See Fig. A.18 at P. A-50 for more details

°Addressing modes:
• immediate
• register
• displacement

°All instructions are 32-bit wide and must be aligned.

0r0
r1
°
°
°
r31
PC
lo
hi

322

ECE4680 Lec4 MIPS.4 February 6, 2002

2 Nomenclatures of MIPS Registers (p.140, A-23)

n.a.Reserved for kernel26 – 27k0 – k1

n.a.reserved for assembler (p.147,157)1at

yesreturn address31ra

yesframe pointer30fp

yesstack pointer29sp

yesglobal pointer28gp

nomore temporaries24 – 25t8 – t9

yessaved16 – 23s0 – s7

notemporaries8 – 15t0 – t7

noarguments4 – 7a0 – a3

novalues for results and expression evaluation2 – 3v0 – v1

n.a.constant value =00zero

Reserved on call?UsagenumberName

zero v0-v1 a0 - a3 t0 - t7 s0 - s7 t8 - t9 gp sp fp raat
0 2 - 3 4 - 7 8 --- 15 16 --- 23 24 - 25 28 29 30 31

k0 - k1
1 26 - 27

ECE4680 Lec4 MIPS.5 February 6, 2002

MIPS arithmetic and logic instructions

Instruction Example Meaning Comments
add add $1,$2,$3 $1 = $2 + $3 3 operands; exception possible
subtract sub $1,$2,$3 $1 = $2 – $3 3 operands; exception possible
add immediate addi $1,$2,100 $1 = $2 + 100 + constant; exception possible

multiply mult $2,$3 Hi, Lo = $2 x $3 64-bit signed product
divide div $2,$3 Lo = $2 ÷÷÷÷ $3, Lo = quotient, Hi = remainder

Hi = $2 mod $3
Move from Hi mfhi $1 $1=Hi get a copy of Hi
Move from Lo mflo $1 $1=lo

Instruction Example Meaning Comment
and and $1,$2,$3 $1 = $2 & $3 Logical AND
or or $1,$2,$3 $1 = $2 | $3 Logical OR
xor xor $1,$2,$3 $1 = $2 ⊕⊕⊕⊕

 $3 Logical XOR
nor nor $1,$2,$3 $1 = ~($2 |$3) Logical NOR

ECE4680 Lec4 MIPS.6 February 6, 2002

Example (p110)

E.g. f= (g+h) - (i+j),
assuming f, g, h, i, j be assigned to $1, $2, $3, $4, $5

add $7, $2, $3
add $8, $4, $5
sub $1, $7, $8

ECE4680 Lec4 MIPS.7 February 6, 2002

MIPS data transfer instructions

Instruction Comment
SW 500($4), $3 Store word
SH 502($2), $3 Store half
SB 41($3), $2 Store byte

LW $1, 30($2) Load word
LH $1, 40($3) Load half a word
LB $1, 40($3) Load byte

ECE4680 Lec4 MIPS.8 February 6, 2002

Example (pp112-114)

Assume A is an array of 100 words, and compiler has
associated the varialbes g and h with the register $1 and $2.
Assume the base address of the array is in $3. Translate

g = h + A[8]

lw $4, 8($3); $4 <-- A[8]
add $1, $2, $4;

lw $4, 32($3);
add $1, $2, $4

A[12] = h+A[8] SW $1, 48($3)

base register

offset or displacement

ECE4680 Lec4 MIPS.9 February 6, 2002

Example (p114)

Assume A is an array of 100 words, and compiler has
associated the varialbes g, h, and i with the register $1, $2, $5.
Assume the base address of the array is in $3. Translate

g = h + A[i]

addi $6, $0, 4; $6 = 4
mult $5, $6; Hi,Lo = i*4
mflo $6; $6 = i*4, assuming i is small

add $4, $3, $6; $4 � address of A[i]

add $1, $2, $4

ECE4680 Lec4 MIPS.10 February 6, 2002

MIPS jump, branch, compare instructions
Instruction Example Meaning
branch on equal beq $1,$2,100 if ($1 == $2) go to PC+4+100

Equal test; PC relative branch
branch on not eq. bne $1,$2,100 if ($1!= $2) go to PC+4+100

Not equal test; PC relative

Pseudoinstruction blt, ble, bgt, bge not implemented by hardware,
but synthesized by assembler

set on less than slt $1,$2,$3 if ($2 < $3) $1=1; else $1=0
Compare less than; 2’s comp.

set less than imm. slti $1,$2,100 if ($2 < 100) $1=1; else $1=0
Compare < constant; 2’s comp.

jump j 10000 go to 10000
Jump to target address

jump register jr $31 go to $31
For switch, procedure return

jump and link jal 10000 $31 = PC + 4; go to 10000
For procedure call

ECE4680 Lec4 MIPS.11 February 6, 2002

Example (p123)

if (i==j) go to L1;
f = g+ h;

L1: f = f - i;

Assuming f, g, h, i, j ~ $1, $2, $3, $4, $5

beq $4, $5, L1
add $1, $2, $3

L1: sub $1, $1, $4

if (i >=j) go to L1;

bqe $4, $5, L1pseudoinstruction

slt $1, $4, $5
beq $0, $1, L1

assembler

ECE4680 Lec4 MIPS.12 February 6, 2002

Example (p126)

Loop: g = g +A[i];
i = i+ j;
if (i != h) go to Loop:

Assuming variables g, h, i, j ~ $1, $2, $3, $4 and base address
of array is in $5

Loop: add $7, $3, $3; i*2
add $7, $7, $7; i*4
add $7, $7, $5
lw $6, 0($7); $6=A[i]
add $1, $1, $6; g= g+A[i]
add $3, $3, $4
bne $3, $2, Loop;

ECE4680 Lec4 MIPS.13 February 6, 2002

Example (p127)

while (A[i]==k)
i = i+j;

Assume i, j, and k ~ $17, $18, $19 and base of A is in $3

Loop: add $20, $17, $17
add $20, $20, $20
add $20, $20, $3
lw $21,0($20)
bne $21, $19, Exit
add $17, $17, $18
j Loop

Exit:

ECE4680 Lec4 MIPS.14 February 6, 2002

MIPS Addressing Modes/Instruction Formats (p118,148,152)

op rs rt rd

immed

register

Register (direct)

op rs rt

register

Base+index

+

Memory

immedop rs rtImmediate

immedop rs rt

PC + 4

PC-relative

+

Memory

func

R-format:

I-format:

J-format:

op addr. Memory

smt
6 5 5 5 65

ECE4680 Lec4 MIPS.15 February 6, 2002

Example: See machine code in memory (p149)

while (A[i]==k)
i = i+j;

Assume i, j, and k ~ $17, $18, $19 and base of A is in $3

Loop: add $20, $17, $17
add $20, $20, $20
add $20, $20, $3
lw $21,0($20)
bne $21, $19, Exit
add $17, $17, $18
j Loop

Exit:

Assume the loop is placed starting at loc 8000
8000: 0 17 17 20 0 32

0 20 20 20 0 32
0 20 3 20 0 32
35 20 21 0
5 21 19 8

0 17 18 17 0 32
2 8000

�Offset in branch is relative. Address in jump is absolute.
�Address in Branch or Jump instruction is word address so that

they can go 4 times far as opposed to byte address. (p150)

2

2000

ECE4680 Lec4 MIPS.16 February 6, 2002

Procedure Call and Stack
Stacking of Subroutine Calls & Returns and Environments:

A:
CALL B

CALL C

C:
RET

RET

B:

A

A B

A B C

A B

A

Some machines provide a memory stack(special hardware) as part of the
architecture (e.g. the VAX). Use special instructions, e.g. pop, push.

Sometimes stacks are implemented via software convention (e.g. MIPS).
Use same data transfer instructions, e.g., lw, sw.

ECE4680 Lec4 MIPS.17 February 6, 2002

Example in C: swap (pp163-165)

swap(int v[], int k)
{

int temp;
temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

}

°Assume swap is called as a procedure
°Assume temp is register $15; arguments v and k ~ $16 and $17;
°Write MIPS code

sll $18, $17, 2 ; mulitply k by 4
addu $18, $18, $16 ; address of v[k]
lw $15, 0($18) ; load v[k]
lw $19, 4($18) ; load v[k+1]
sw $19, 0($18) ; store v[k+1] into v[k]
sw $15, 4($18) ; store old v[k] into v[k+1]

Registers $15, $16, $17, $18, $19 are occupied by caller ??

ECE4680 Lec4 MIPS.18 February 6, 2002

Example: Swap

Given a procedure swap(v, j)

Calling swap is as simple as
jal swap

jal --- jump and link
$31 = PC+4; $31=$ra : always store return address
goto swap

ECE4680 Lec4 MIPS.19 February 6, 2002

swap: MIPS
swap:

addi $sp,$sp, –24 ; Make room on stack for 6 registers
sw $31, 20($sp) ; Save return address
sw $15, 16($sp) ; Save registers on stack
sw $16, 12($sp)
sw $17, 8($sp)
sw $18, 4($sp)
sw $19, 0(sp)
....
lw $19, 0($sp) ; Restored registers from stack
lw $18, 4($sp)
lw $17, 8($sp)
lw $16, 12($sp)
lw $15, 16($sp)
lw $31, 20($sp) ; Restore return address
addi $sp,$sp, 24 ; restore top of stack
jr $31 ; return to place that called swap

ECE4680 Lec4 MIPS.20 February 6, 2002

Other ISAs

°Intel 8086/88 => 80286 => 80386 => 80486 => Pentium => P6
• 8086 few transistors to implement 16-bit microprocessor
• tried to be somewhat compatible with 8-bit microprocessor 8080
• successors added features which were missing from 8086 over

next 15 years
• product of several different Intel engineers over 10 to 15 years
• Announced 1978

°VAX simple compilers & small code size =>
• efficient instruction encoding
• powerful addressing modes
• powerful instructions
• few registers
• product of a single talented architect
• Announced 1977

ECE4680 Lec4 MIPS.21 February 6, 2002

Machine Examples: Address & Registers
Intel 8086

VAX 11

MC 68000

MIPS

2 x 8 bit bytes
AX, BX, CX, DX
SP, BP, SI, DI
CS, SS, DS
IP, Flags

2 x 8 bit bytes
16 x 32 bit GPRs

2 x 8 bit bytes
8 x 32 bit GPRs
7 x 32 bit addr reg
1 x 32 bit SP
1 x 32 bit PC

2 x 8 bit bytes
32 x 32 bit GPRs
32 x 32 bit FPRs
HI, LO, PC

acc, index, count, quot
stack, string
code,stack,data segment

r15-- program counter
r14-- stack pointer
r13-- frame pointer
r12-- argument ptr

32

32

24

20

ECE4680 Lec4 MIPS.22 February 6, 2002

Homework 2, due Feb. 20, 2002

°Questions 3.2, 3.3, 3.5, 3.6, 3.7, 3.9, 3.11
°To answer question 3.7, please refer to Figure 3.13 (page 140) for

register convention
°To answer 3.11, please refer to sort example in pages 166 for a skeleton

of for loop

