
INPUT/OUTPUT ORGANIZATION

• Accessing I/O Devices

• I/O interface

• Input/output mechanism
Memory-mapped I/Oy pp /
Programmed I/O
Interrupts
Direct Memory AccessDirect Memory Access

• Buses
Synchronous Bus
Asynchronous Bus

I/O in CO and O/S

• Programmed I/O

• Interrupts

• DMA (Direct memory Access)

A bus is a shared communication link, which uses one ,
set of wires to connect multiple subsystems.

The two major advantages of the bus organization are The two major advantages of the bus organization are
versatility and low cost.

Accessing I/O Devices

• Most modern computers use single bus arrangement

for connecting I/O devices to CPU & Memory

• The bus enables all the devices connected to it to

exchange informationexchange information

• Bus consists of 3 set of lines : Address, Data, Control

• Processor places a particular address (unique for an

I/O Dev.) on address lines

• Device which recognizes this address responds to the

commands issued on the Control lines commands issued on the Control lines

• Processor requests for either Read / Write

• The data will be placed on Data lines

Hardware to connect I/O devices
t bto bus

• Interface Circuit

– Address Decoder

– Control Circuits– Control Circuits

– Data registers

– Status registers

• The Registers in I/O Interface – buffer and control

• Flags in Status Registers like SIN SOUT• Flags in Status Registers, like SIN, SOUT

• Data Registers, like Data-IN, Data-OUT

I/O interface for an input device

MMemory

Processor Data
Control

Address

Control

Add C t l D t d t t I/O Address
Decoders

Control
circuits

Data and status
registers

/O
Interface

Input device (s)p ()

Input Output
h i

• Memory mapped I/O

• Programmed I/O
mechanism

Programmed I/O

• Interrupts

• DMA (Direct memory Access)

A bus generally contains a set of control lines and a set
of data lines.

The control lines are used to signal requests and
acknowledgments, and to indicate what type of information is
on the data lines. The control lines are used to indicate what
the bus contains and to implement the bus protocol.

The data lines of the bus carry information between the
source and the destination. This information may consist
of data, complex commands, or addresses.

di i ll l ifi dBuses are traditionally classified as processor-memory
buses or I/O buses or special purposed buses (Graphics, etc.).
Processor memory buses are short, generally high speed, and
matched to the memory system so as to maximize memory-
processor bandwidth.

I/O b b t t b l th h I/O buses, by contrast, can be lengthy, can have many
types of devices connected to them, and often have a wide
range in the data bandwidth of the devices connected to them.
I/O buses do not typically interface directly to the memory but
use either a processor-memory or a backplane bus to connect
to memory.

The major disadvantage of a bus is that it creates a
communication bottleneck possibly limiting the maximum I/O communication bottleneck, possibly limiting the maximum I/O
throughput.

When I/O must pass through a single bus the When I/O must pass through a single bus, the
bandwidth of that bus limits the maximum I/O throughput.

R h b d i i diffi lt Reason why bus design is so difficult :
- the maximum bus speed is largely limited by physical
factors: the length of the bus and the number of devices.
These physical limits prevent us from running the bus
arbitrarily fast.

- In addition, the need to support a range of devices with
widely varying latencies and data transfer rates also makes
bus design challenging.bus design challenging.

- it becomes difficult to run many parallel wires at high speed
due to clock skew and reflectiondue to clock skew and reflection.

The two basic schemes for communication on the bus
are synchronous and asynchronous.

If a bus is synchronous (e.g. Processor-memory), it
includes a clock in the control lines and a fixed protocol for
communicating that is relative to the clock. g

This type of protocol can be implemented easily in a
small finite state machine. Because the protocol is
predetermined and involves little logic, the bus can run very
fast and the interface logic will be small.

Synchronous buses have two major disadvantages: Synchronous buses have two major disadvantages:

- First, every device on the bus must run at the same clock
rate.
- Second, because of clock skew problems, synchronous buses
cannot be long if they are fast.

A h b i t l k d It d t An asynchronous bus is not clocked. It can accommodate a
wide variety of devices, and the bus can be lengthened without
worrying about clock skew or synchronization problems.

To coordinate the transmission of data between sender and
receiver, an asynchronous bus uses a handshaking protocol.

Three special control lines required for hand-shaking:

ReadReq: Used to indicate a read request for memory. The address
is put on the data lines at the same time.

D t Rd U d t i di t th t th d t d i d th DataRdy: Used to indicate that the data word is now ready on the
data lines; asserted by: Output/Memory and Input/I_O Device.

Ack: Used to acknowledge the ReadReq or the DataRdy signal of the Ack: Used to acknowledge the ReadReq or the DataRdy signal of the
other party.

I/O Dev.

Memory

Steps after the device signals a request by raising ReadReq and
putting the address on the Data lines:putting the address on the Data lines:
1. When memory sees the ReadReq line, it reads the address from the
data bus and raises Ack to indicate it has been seen.
2. As the Ack line is high - I/O releases the ReadReq and data lines.g / q
3. Memory sees that ReadReq is low and drops the Ack line to
acknowledge the ReadReq signal (Mem. Reading in progress now).
4. This step starts when the memory has the data ready. It places the
data from the read request on the data lines and raises DataRdy.
5. The I/O device sees DataRdy, reads the data from the bus, and
signals that it has the data by raising Ack.
6. On the Ack signal, M/M drops DataRdy, and releases the data lines.
7. Finally, the I/O device, seeing DataRdy go low, drops the Ack line,
which indicates that the transmission is completed.

Memory mapped I/O
• I/O devices and the memory share the same address space the • I/O devices and the memory share the same address space, the

arrangement is called Memory-mapped I/O.

• In Memory-mapped I/O portions of address space are assigned • In Memory-mapped I/O portions of address space are assigned
to I/O devices and reads and writes to those addresses are
interpreted as commands to the I/O device.

“DATAIN” is the address of the input buffer associated with the
keyboard.

- Move DATAIN, R0
reads the data from DATAIN and stores them into processor

register R0;register R0;

- Move R0, DATAOUT
sends the contents of register R0 to location DATAOUTg

Option of special I/O address space or incorporate as a part
of memory address space (address bus is same always).

When the processor places the address and data on the
memory bus, the memory system ignores the operation
because the address indicates a portion of the memory space because the address indicates a portion of the memory space
used for I/O.

The device controller, however, sees the operation, The device controller, however, sees the operation,
records the data, and transmits it to the device as a command.

User programs are prevented from issuing I/O p g p g /
operations directly because the OS does not provide access to
the address space assigned to the I/O devices and thus the
addresses are protected by the address translation. addresses are protected by the address translation.

Memory mapped I/O can also be used to transmit data
by writing or reading to select addresses. The device uses the by writing or reading to select addresses. The device uses the
address to determine the type of command, and the data may
be provided by a write or obtained by a read.

A program request usually requires several separate
I/O operations. Furthermore, the processor may have to
interrogate the status of the device between individual interrogate the status of the device between individual
commands to determine whether the command completed
successfully.

DATAIN

DATAOUT

STATUS DIRQ KIRQ SOUT SIN

DEN KENCONTROL
7 6 5 4 3 2 1 0

DEN KEN

I/O operation involving keyboard and display devices

Registers: DATAIN, DATAOUT, STATUS, CONTROL

Flags: SIN, SOUT - Provides status information for keyboard

and display unit

KIRQ, DIRQ – Keyboard, Display Interrupt request bits

DEN, KEN –Keyboard, Display Enable bits

Programmed I/O

• CPU has direct control over I/O
S i t t– Sensing status

– Read/write commands
– Transferring dataTransferring data

• CPU waits for I/O module to
complete operation

• Wastes CPU time• Wastes CPU time

In this case, use dedicated I/O instructions in the
processor. These I/O instructions can specify both the device
number and the command word (or the location of the number and the command word (or the location of the
command word in memory).

The processor communicates the device address via a The processor communicates the device address via a
set of wires normally included as part of the I/O bus. The
actual command can be transmitted over the data lines in the
bus (example - Intel IA-32)bus. (example - Intel IA-32).

By making the I/O instructions illegal to execute when
not in kernel or supervisor mode user programs can be not in kernel or supervisor mode, user programs can be
prevented from accessing the devices directly.

The process of periodically checking status bits to see The process of periodically checking status bits to see
if it is time for the next I/O operation, is called polling. Polling
is the simplest way for an I/O device to communicate with
the processor the processor.

The I/O device simply puts the information in a Status
register and the processor must come and get the register, and the processor must come and get the
information. The processor is totally in control and does all
the work.

A ISA program to read one line from the keyboard, store it in
memory buffer and echo it back to the displaymemory buffer, and echo it back to the display

The disadvantage of polling is that it can waste a lot of
processor time because processors are so much faster than
I/O devices I/O devices.

The processor may read the Status register many times,
only to find that the device has not yet completed a only to find that the device has not yet completed a
comparatively slow I/O operation, or that the mouse has not
budged since the last time it was polled.

When the device completes an operation, we must still
read the status to determine whether it (I/O) was successful.

Overhead in a polling interface lead to the
invention of interrupts to notify the processor when an I/O invention of interrupts to notify the processor when an I/O
device requires attention from the processor.

Interrupt driven I/O employs I/O interrupts to Interrupt-driven I/O, employs I/O interrupts to
indicate to the processor that an I/O device needs attention.

When a device wants to notify the processor that it has When a device wants to notify the processor that it has
completed some operation or needs attention, it causes the
processor to be interrupted.

Interrupts
I/O Processor

INTERRUPT

• When I/O Device is ready, it sends the INTERRUPT

signal to processor via a dedicated controller line

• Using interrupt we are ideally eliminating WAIT period• Using interrupt we are ideally eliminating WAIT period

• In response to the interrupt, the processor executes the

Interrupt Service Routine (ISR)

• All the registers flags program counter values are saved• All the registers, flags, program counter values are saved

by the processor before running ISR

• The time required to save status & restore contribute to

execution overhead  “Interrupt Latency”p y

interrupt-acknowledge signal - I/O device interface
accomplishes this by execution of an instruction in the p y
interrupt-service routine (ISR) that accesses a status or
data register in the device interface; implicitly informs the
device that its interrupt request has been recognized. IRQ device that its interrupt request has been recognized. IRQ
signal is then removed by device.

ISR is a sub-routine – may belong to a different user
than the one being executed and then halted.

The condition code flags and the contents of any
registers used by both the interrupted program and the
interrupt service routine are saved and restoredinterrupt-service routine are saved and restored.

The concept of interrupts is used in operating systems
d i l li i h i fand in many control applications, where processing of

certain routines must be accurately timed relative to
external events (e.g. real-time processing).

Interrupt Hardwarep

Pull-up Pull up
resister

INTR INTR1 INTR

An equivalent circuit for an open drain bus used to implement a

INTR = INTR1 +…..+INTR n

An equivalent circuit for an open-drain bus used to implement a
common interrupt-request line

Interrupt Hardware

Supplypp y

R

Processor
Pull-up

resister

INTR

INTR 1 INTR 2 INTR 3

GND
INTR = INTR1 +…..+INTR n

INTR

Enabling and Disabling Interrupts
• Device activates interrupt signal line and waits with this

signal activated until processors attends

• The interrupt signal line is active during execution of ISR
and till the device caused interrupt is serviced

• Necessary to ensure that the active signal does not lead to
successive interruptions (level-triggered input) causing successive interruptions (level triggered input) causing
the system to fall in infinite loop.

h if h d i i i i hi• What if the same device interrupts again, within an ISR ?

• Three methods of Controlling Interrupts (single device)• Three methods of Controlling Interrupts (single device)
– Ignoring interrupt
– Disabling interrupts
– Special Interrupt request line

• Ignoring Interrupts
– Processor hardware ignores the interrupt request line

until the execution of the first instruction of the ISRuntil the execution of the first instruction of the ISR
completed

– Using an interrupt disable instruction after the first
instruction of the ISR – no further interrupts

– A return from interrupt instruction is completed before
further interruptions can occurfurther interruptions can occur

• Disabling Interrupts
– Processor automatically disables interrupts before

starting the execution of the ISR
The processor saves the contents of PC and PS (status– The processor saves the contents of PC and PS (status
register) before performing interrupt disabling.

– The interrupt-enable is set to 0 – no further interrupts
allowed

– When return from interrupt instruction is executed the
contents of the PS are restored from the stack, and thecontents of the PS are restored from the stack, and the
interrupt enable is set to 1

• Special Interrupt linep p

– Special interrupt request line for which the interrupt
h dli i it d l t th l di d fhandling circuit responds only to the leading edge of
the signal

– Edge –triggeredg gg
– Processor receives only one request regardless of

how long the line is activated
N t i t t di bli i t ti– No separate interrupt disabling instructions

The sequence of events involved in handling an interrupt
request from a single device.

Assuming that interrupts are enabled, the following is a
typical scenario:
1 The device raises an interrupt request1. The device raises an interrupt request.

2. The processor interrupts the program currently being
t d

3. Interrupts are disabled by changing the control bits in the
PS (except in the case of edge-triggered interrupts)

executed.

PS (except in the case of edge-triggered interrupts).

4. The device is informed that its request has been
i d d i it d ti t th i t trecognized, and in response, it deactivates the interrupt-

request signal.

5. The action requested by the interrupt is performed by the
interrupt-service routine.

6. Interrupts are enabled and execution of the interrupted
program is resumed.

Handling Multiple Devices

• Multiple devices can initiate interruptsp p

• They uses the common interrupt request liney p q

• Techniques areq

– Polling

– Vectored Interruptsp

– Interrupt Nesting

– Daisy Chainingy g

Polling Scheme

• The IRQ (interrupt request) bit in the status register is
set when a device is requesting an interrupt.set when a device is requesting an interrupt.

• The Interrupt service routine polls the I/O devicesThe Interrupt service routine polls the I/O devices
connected to the bus.

• The first device encountered with the IRQ bit set is
serviced and the subroutine is invoked.

• Easy to implement, but too much time spent on
checking the IRQ bits of all devices, though some
devices may not be requesting service.

Vectored Interrupts
• Device requesting an interrupt identifies itself directly to

the processor

• The device sends a special code to the processor over the

bus.

• The code contains the

identification of the device– identification of the device,

– starting address for the ISR,

– address of the branch to the ISR

• PC finds the ISR address from the code.

• To add flexibility for multiple devices - corresponding ISR

is executed by the processor using a branch address to theis executed by the processor using a branch address to the

appropriate routine - device specified Interrupt Vector.

An interrupt vector is the memory address of an
interrupt handler, or an index into an array called an interrupt
vector table or dispatch table - a table of interrupt vectors vector table or dispatch table a table of interrupt vectors
(pointers to routines that handle interrupts).

Interrupt vector tables contain the memory addresses Interrupt vector tables contain the memory addresses
of interrupt handlers. When an interrupt is generated, the
processor saves its execution state via a context switch, and
b i ti f th i t t h dl t th i t t

The Interrupt Descriptor Table (IDT) is specific to the

begins execution of the interrupt handler at the interrupt
vector.

p p () p
I386 architecture. It tells where the Interrupt Service
Routines (ISR) are located.

Each interrupt number is reserved for a specific
purpose. For example, 16 of the vectors are reserved for the
16 IRQ lines.Q

On PCs, the interrupt vector table (IVT or IDT) consists
of 256 4-byte pointers - the first 32 (0-31 or 00-1F) of which

f fare reserved for processor exceptions; the rest for hardware
interrupts, software interrupts. This resides in the first 1 K of
addressable memory.

Interrupt Nesting

• Pre-Emption of low priority Interrupt by another highPre Emption of low priority Interrupt by another high

priority interrupt is known as Interrupt nesting.

Di bli I t t d i th ti f th ISR• Disabling Interrupts during the execution of the ISR

may not favor devices which need immediate attention.

• Need a priority of IRQ devices and accepting IRQ from a

high priority device.

• The priority level of the processor can be changed

dynamically.y y

• The privileged instruction write in the PS (processor

status word) that encodes the processors prioritystatus word), that encodes the processors priority.

Interrupt Nesting (contd.)

1INTR pINTR
oc

es
so

r

Device 1 Device 2 Device p.. .
1INTR p

Pr
o

INTA 1 INTA p

Priority arbitration circuit

• Organizing I/O devices in a prioritized structure.g g / p

• Each of the interrupt-request lines is assigned a

different priority leveldifferent priority level.

• The processor is interrupted only by a high priority

device.

Daisy Chaining

• The interrupt request line INTR is common to all the

devices

• The interrupt acknowledgement line INTA is connected to

devices in a DAISY CHAIN way

• INTA propagates serially through the devices

• Device that is electrically closest to the processor gets

hi h i ihigh priority

• Low priority device may have a danger of STARVATION

r

INTR

P
ro

ce
ss

or

D i 1 D i 2 D i
. .P Device 1 Device 2 Device n

INTA

Daisy Chaining with Priority Group

• Combining Daisy chaining and Interrupt nesting to form

priority groupp y g p

• Each group has different priority levels and within each

group devices are connected in daisy chain way

1INTR

ce
ss

or Device 1 Device 1
. .

INTA 1

Pr
oc

D i 1 D i 1

. .pINTR

Device 1 Device 1INTA p
Priority arbitration circuit

Arrangement of priority groups

Direct Memory Access (DMA)
• For I/O transfer, Processor determines the status of I/O

devices, by

– Polling
– Waiting for Interrupt signal

• Considerable overhead is incurred in above I/O transfer

processing

• To transfer large blocks of data at high Speed, between

EXTERNAL devices & Main Memory, DMA approach is

often usedoften used

• DMA controller allows data transfer directly between I/O

d i d M i h i i l i i fdevice and Memory, with minimal intervention of

processor.

Direct Memory Access (DMA)
• DMA controller acts as a Processor, but it is controlled

by CPU

• To initiate transfer of a block of words, the processor

sends the following data to controllersends the following data to controller

– The starting address of the memory block

h d– The word count

– Control to specify the mode of transfer such as read

or write

– A control to start the DMA transfer

• DMA controller performs the requested I/O operation

and sends a interrupt to the processor upon completionand sends a interrupt to the processor upon completion

31 30 1 0
Status and Control IRQ IE R/W Done

Starting address

Word count

In DMA interface
 First register stores the starting addressg g
 Second register stores Word count
 Third register contains status and control flags

Bits and Flags 1 0
R/W READ WRITE

Done Data transfer finishes

IRQ Interrupt request

IE Raise interrupt (enable) after Data
Transfer

Processor Main memory

Disk/DMA
controller Printer KeyboardDMA

controller

Disk Disk
Network
Interface

Use of DMA Controller in a computer system

• Memory accesses by the processor and DMA Controller

are interwoven

• DMA devices have higher priority then processor over

BUS controlBUS control

• Cycle Stealing:- DMA Controller “steals” memory cycles

from processor, though processor originates most

memory access.

• Block or Burst mode:- The DMA controller may given

exclusive access to the main memory to transfer a block

of data without interruption

• Conflicts in DMA:• Conflicts in DMA:

- Processor and DMA,

- Two DMA controllers, try to use the Bus at the

same time to access the main memory

DMA and Interrupt Breakpoints
D i I t ti C lDuring an Instruction Cycle

Bus Arbitration
• Bus master: device that initiates data transfers on the

bus.

• The next device can take control of the bus after the
current master relinquishes control

• Bus Arbitration: process by which the next device to
become master is selectedbecome master is selected

• Centralized and Distributed Arbitration

r

BBSY

BR

P
ro

ce
ss

or

DMA DMA

BR

P DMA
controller 1

DMA
controller 2

BG1 BG2

A simple arrangement for bus arbitration using a daisy chainA simple arrangement for bus arbitration using a daisy chain

– BR (bus request) line - open drain line - the signal on
this line is a logical OR of the bus request from all theg q
DMA devices

– BG (bus grant) line - processor activates this line– BG (bus grant) line - processor activates this line
indicating (acknowledging) to all the DMA devices
(connected in daisy chain fashion) that the BUS may be
used when its freeused when its free.

– BBSY (bus busy) line - open collector line - the current
b i di d i h i i l ibus master indicates devices that it is currently using
the bus by signaling this line

or

BBSY

BR

P
ro

ce
ss

DMA DMA
controller 1 controller 2

BG1 BG2

Sequence of signals during data transfer of bus mastership

• Centralized Arbitration

– Separate unit (bus arbitration circuitry) connected to
the bus

– Processor is normally the bus master, unless it
grants bus mastership to DMAgrants bus mastership to DMA

For the timing/control, in previous slide:

DMA controller 2 requests and acquires bus mastership
and later releases the bus.

During its tenure as the bus master, it may perform one
or more data transfer operations, depending on whether it is p , p g
operating in the cycle stealing or block mode.

After it releases the bus, the processor resumes bus After it releases the bus, the processor resumes bus
mastership.

• Distributed Arbitration

– All devices waiting to use the bus has to carry out
the arbitration process - no central arbiter

– Each device on the bus is assigned with a 4-bit
identification numberidentification number

– One or more devices request the bus by assertingq y g
the start-arbitration signal and place their
identification number on the four open collector
lineslines

– ARB0 through ARB3 are the four open collector
lines

One among the four is selected using the code on– One among the four is selected using the code on
the lines and one with the highest ID number

A distributed arbitration scheme

Assume that two devices, A and B, having ID numbers
5 and 6, respectively, are requesting the use of the bus.

Device A transmits the pattern 0101, and device B
transmits the pattern 0110. p

The code seen by both devices is 0111.

Each device compares the pattern on the arbitration
lines to its own ID, starting from the most significant bit.

If it detects a difference at any bit position, it disables
its drivers at that bit position and for all lower-order bits. It
does so by placing a 0 at the input of these drivers does so by placing a 0 at the input of these drivers.

In the case of our example, device A detects a
diff li ARB I H i di bl i d i difference on line ARB I. Hence, it disables its drivers on
lines ARB 1 and ARBO.

This causes the pattern on the arbitration lines to
change to 0110, which means that B has won the contention.

Universal Serial Bus (USB)
The USB supports two speeds of operation called lowThe USB supports two speeds of operation, called low-

speed (1.5 megabits/s) and full-speed (12 megabits/s).

Th i i f h b ifi i (USB The most recent revision of the bus specification (USB
2.0) introduced a third speed of operation, called high-speed
(480 megabits/s).

The USB has been designed to meet several key objectives:

P id i l l t d t i t ti - Provide a simple, low-cost, and easy to use interconnection
system that overcomes the difficulties due to the limited
number of I/O ports available on a computer

- Accommodate a wide range of data transfer characteristics
for I/O devices, including telephone and Internet connections/ , g p

- Enhance user convenience through a ''plug-and-play'' mode
of operationof operation

USB Bandwidths:

- A low-speed rate of 1.5 Mbit/s (~183 kB/s) is defined
by USB 1.0. It is intended primarily to save cost in low-
bandwidth human interface devices (HID) such as keyboards, () y ,
mice, and joysticks.

- The full-speed rate of 12 Mbit/s (~1.43 MB/s) is the The full speed rate of 12 Mbit/s (1.43 MB/s) is the
basic USB data rate defined by USB 1.1. All USB hubs support
full-bandwidth.

- A high-speed (USB 2.0) rate of 480 Mbit/s (~57 MB/s)
was introduced in 2001. All hi-speed devices are capable of
falling back to full bandwidth operation if necessary; they are falling back to full-bandwidth operation if necessary; they are
backward compatible. Connectors are identical.

d () d bi /SuperSpeed (USB 3.0) rate produces upto 4800 Mbit/s
(~572 MB/s or 5 Gbps)

Each node of the tree has a device called a hub, which
acts as an intermediate control point between the host and
the I/0 devices the I/0 devices.

At the root of the tree, a root hub connects the entire
tree to the host computer. The leaves of the tree are the I/0 p /
devices being served. The tree structure enables many
devices to be connected while using only simple point-to-
point serial links. point serial links.

Each hub has a number of ports where devices may be
connected, including other hubs. In normal operation, a hub g
copies a message that it receives from its upstream
connection to all its downstream ports.

A lt t b th h t t i As a result, a message sent by the host computer is
broadcast to all I/O devices, but only the addressed device
will respond to that message.

A message from an I/O device is sent only upstream
towards the root of the tree and is not seen by other devices.
H th USB bl th h t t i t ith th I/O Hence, the USB enables the host to communicate with the I/O
devices, but it does not enable these devices to communicate
with each other.

The USB operates strictly on the basis of polling. A
device may send a message only in response to a poll
message from the host message from the host.

Hence, upstream messages do not encounter conflicts
or interfere with each other as no two devices can send or interfere with each other, as no two devices can send
messages at the same time. This restriction allows hubs to be
simple, low-cost devices.

USB protocol requires that
a message transmitted on a high-
speed link is always transmitted p y
at high speed, even when the
ultimate receiver is a low-speed
device device.

Hence, a message intended
for device D is sent at high speed
from the root hub to hub A thenfrom the root hub to hub A, then
forwarded at low speed to device
D. The latter transfer will take a
l ti d i hi h hi hlong time, during which high-
speed traffic to other nodes is
allowed to continue.

Each device on the USB, whether it is a hub or an I/O
device, is assigned a 7-bit address. This address is local to the
USB tree and is not related in any way to the addresses used on USB tree and is not related in any way to the addresses used on
the processor bus.

A hub may have any number of devices or other hubs
connected to it, and addresses are assigned arbitrarily. When a
device is first connected to a hub, or when it is powered on, it has
the address 0.

The hardware of the hub to which this device is connected
is capable of detecting that the device has been connected, and it

d hi f f i i f irecords this fact as part of its own status information.
Periodically, the host polls each hub to collect status information
and learn about new devices that may have been added or
disconnected.

When the host is informed that a new device has been
connected it uses a sequence of commands to send a reset signal connected, it uses a sequence of commands to send a reset signal
on the corresponding hub port, read information from the device
about its capabilities, send configuration information to the
d i d i th d i i USB dd O thi device, and assign the device a unique USB address. Once this
sequence is completed the device begins normal operation and
responds only to the new address. <This is key for Plug&PLAY>

Read about

USB protocolsUSB protocols

Isochronous traffic on USB

and

USB FRAME

