
Functions of Control Unit

 Sequencing
!Causing the CPU to step through a series of micro-

ioperations

 Execution
!Causing the performance of each micro-op

 Use of Control Signals to accomplish the taskg p



Types of Control Signalsyp g

• Clock
o One micro-instruction (or set of parallel micro-o One micro-instruction (or set of parallel micro-

instructions) per clock cycle
• Instruction register
! Op-code for current instruction
! D i hi h i i i f d! Determines which micro-instructions are performed

• Flags• Flags
! State of CPU
! Results of previous operations! Results of previous operations

• From control bus
! Interrupts
! Acknowledgements



Model of Control UnitModel of Control Unit



HARDWIRED CONTROL

The required control signals are determined by the 
following information:following information:

• Contents of the control Step Counter

• Contents of the IR

• Contents of the condition code flags

• External I/P signals, MFC, IRQ etc.g Q



Control Unit with Decoded InputsControl Unit with Decoded Inputs
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For an “ADD” instruction (ISA): For a “Branch” instruction (ISA):For an ADD  instruction (ISA):

1. PCout, MARin, READ, SEL #4, ADD, Zin

2.

( )

1. PCout, ………, Zin

2.

3.

4.

5.

3.

4. Offset (IRout), ADD, Zin

5. Zout, PCin, END

6. MDRout, SEL Y, ADD, Zin

.......
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   ! BRTADDTTZ
in

END = T7.ADD + T5.BR + (T5.CF + T4.CF’).BRN +….

When RUN = 0, the counter STOPS; required from W_MFC;

Design logic mostly based on FSM (Finite State machine)



.......
461

   ! BRTADDTTZ
in

END = T7.ADD + T5.BR + (T5.CF + T4.CF’).BRN +….



FSM – based Hardware Control Unit  design

Moore type machine necessary  - output signal depends on the 

current state.

Next state depends on the input and current state.

E h     f l i lEach state generates a set of control signals.

To implement any ISA, the system sequentially changes state from 
 t  th  C t l U it i l t  th  tone to another. Control Unit implements the steps.

For a sequence of “N” steps, there are S0 to SN-1 stages.

At each stage Si: a set of outputs Oi,0….Oi,M-1 are generated,g i p i,0 i,M 1 g

depending on the Si.

Categories of control signals:  functions for ALU, select of storage 
units, select of data routes (based on design).
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S0  0 0 S0  0 0 1 1  S2 0

S1  0 1 S0  0 0 1 1  S2 1

S2  1 1 S2  1 1 1 0  S3 1

S3  1 0 S3  1 0 0 1  S1 0



Moore network  example
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The outputs of the combinational logic are the next-
state number and the control signals to be asserted for the 
current state. 

The inputs to the combinational logic are the current p g
state and any inputs used to determine the next state. In 
this case, the inputs are the instruction register opcode 
bits  bits.

Notice that in the FSM for Hardwired Control, the
outputs depend only on the current state  not on the outputs depend only on the current state, not on the 
inputs.

Id tif i  h t i ti  f   M  hi  i  th t Identifying characteristic for a Moore machine is that
the output depends only on the current state. 

For a Moore machine, the box labeled combinational 
control logic can be split into two pieces. One piece has the 
control output and only the state input, while the other has p y p ,
only the next-state output.
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Moore type machine - output signal depends on the 

current state.

Next state depends on the input and current state.









Break the 
control function 
into two parts: into two parts: 

- the next-state
outputs, which p ,
depend on all the 
inputs,

and

- the control  - the control  
signal outputs,
which depend 
o l  o  the only on the 
current-state bits

Let’s look at 

a ROM-based
i l t tiimplementation,
first.





e.g.: PCWrite is high in states 0 and 9; this corresponds to 

addresses with the 4 low-order bits being either 0000 or g
1001. The bit will be high in the memory word independent of 
the inputs Op[5–0], so the addresses with the
bit high are 000000000, 0000001001, 0000010000, bit high are 000000000, 0000001001, 0000010000, 
0000011001, . . . , 1111110000, 1111111001. 

The general form of this is XXXXXX0000 or XXXXXX1001.



The truth table for 

next-state output bit
(NS[0])(NS[0]).

The next-state 
outputs depend on the outputs depend on the 
value of Op[5–0], 
which is the opcode 
field  and the current field, and the current 
state, given by S[3–0].



Th  f  t th The four truth
tables for the 

four next-state
 bi  output bits

(NS[3–0]).

The next-state 
outputs depend 
on the value of 
Op[5–0], which 
is the opcode 
field, and the 
current state, 
given by S[3–0].





The entry from the top  yields
0000000000011000, while the 
appropriate entry in the table 
b l  i  0010  Th  th  t l below is 0010. Thus the control

word at address 1000110001
is 00000000000110000010.

The column labeled “Any other
value” applies only when the 
Op bits do not match one of 
the specified opcodes

For example, the word
at address 

1000110001 i

the specified opcodes.

1000110001 is

obtained by finding (i)
the upper 16 bits from
the table on top  usingthe table on top, using
only the state input 

bits (0001) and (ii) 

concatenating the concatenating the 
lower 4 bits found by 
using the entire 

address (0001 to findaddress (0001 to find

the row and 100011
to find the column). 



For ALU Control & simple CPU control lines
– check slides:

32  - 35





TYPES of PLDS:

• PAL - PAL devices have arrays of transistor cells arranged in a 
"fixed OR  programmable AND" plane used to implement "sum of"fixed-OR, programmable-AND" plane used to implement "sum-of-
products" binary logic equations

• PLA - The PLA (also FPLA) has a set of programmable AND gate• PLA - The PLA (also FPLA) has a set of programmable AND gate
planes, which link to a set of programmable OR gate planes, which 
can then be conditionally complemented to produce an output. This 
layout allows for a large number of logic functions to be synthesized layout allows for a large number of logic functions to be synthesized 
in the sum of products (and sometimes product of sums) in canonical 
forms.

• GAL - The GAL (Generic Array Logic) was an improvement on the 
PAL because one device was able to take the place of many PAL p y
devices or could even have functionality not covered by the original 
range. Its primary benefit, however, was that it was erasable and re-
programmable making prototyping and design changes easier for 
engineers.

• A similar device called a PEEL (programmable electrically erasable 
logic) was introduced by the International CMOS Technology (ICT) 
corporation.



• FPGA - FPGAs contain programmable logic components called 

"logic blocks", and a hierarchy of reconfigurable interconnects that 
allow the blocks to be "wired together“ - somewhat like a one-chipallow the blocks to be wired together  somewhat like a one chip
programmable breadboard. 

The most common FPGA architecture consists of an array of The most common FPGA architecture consists of an array of 
configurable logic blocks (CLBs), I/O pads, and routing channels. 
Generally, all the routing channels have the same width (number 
of wires). Multiple I/O pads may fit into the array – programmable) p / p y y p g
using HDL.

• CPLD – between PALs and FPGAs. Has ROM and hence non-
volatile. Handles complex logics with feedback and arithmetic 
operations.

• ROM –

• PLC - Automation of machinery control – a small embedded system

• PLL  ??



Various optimizers and sequencers are used for efficient design.

Difficult to design when complex operations/instructions are 
necessary –
Floating point  superscalar  pipelining etcFloating point, superscalar, pipelining etc.

Correcting errors and debugging is difficultCorrecting errors and debugging is difficult

How do you implement W(MFC) in this state machine ??

Minor modifications of the ISA requires lot of changes and redo 
the design.g

Complex instructions may require to go through several states 
and signals to be generated

M  d  h  d i   i   RISE l b /h ll f  Many opcodes – the design may require a RISE lab./hall for
generating the truth table.



Microprogramming

! Micro-Instructions  for:  ADD (R3), R1





The  PC is incremented every time a new micro-

instruction is fetched from the micro-program (Control instruction is fetched from the micro-program (Control 
Store) memory, except in the following situations:

1 When a ne  inst ction is loaded into the IR  the 1. When a new instruction is loaded into the IR, the 

 PC is loaded with the starting address of the micro-

routine for that instruction.routine for that instruction.

2. When a Branch microinstruction is encountered 

d th  b h diti  i  ti fi d  th  PC i  l d d and the branch condition is satisfied, the  PC is loaded

with the branch address.

3. When an End microinstruction is encountered, the 

 PC is loaded with the address of the first CW in the 

microroutine for the instruction fetch cycle (this address microroutine for the instruction fetch cycle (this address 
is 0).



Drawbacks of this simple micro-instrcn. system:

- assigning individual bits to each control signal results in 
long microinstructions because the number of required 
signals is usually largesignals is usually large.

- only a few bits are set to 1 (for active gating) in any 
given microinstruction  which means the available bit given microinstruction, which means the available bit 
space is poorly used.

Assume:
In total, 42 control signals are needed.

e.g.
- Read, Write, Select, WMFC, End; 
- Add, Subtract, AND, and XOR;, , , ;
- Separate signals to Ri’s ;   PC, IR, MAR, MDR etc.



42 bits would be needed in each microinstruction. 
Fortunately  the length of the microinstructions can be Fortunately, the length of the microinstructions can be 
reduced easily. Most signals are not needed simultaneously, 
and many signals are mutually exclusive. 

For example, only one function of the ALU can be 
activated at a time. The source for a data transfer must be 
unique because it is not possible to gate the contents
of two different registers onto the bus at the same time. 
Read and Write signals to the memory cannot be active g y
simultaneously.

This suggests that signals can be grouped so that all This suggests that signals can be grouped so that all 
mutually exclusive signals are placed in the same group.
Thus, at most one microoperation per group is specified in 
any microinstructionany microinstruction



For example, four bits suffice to represent the 16 
available functions in the ALU. 

Register output control signals can be placed in a 
group consisting of PCout, MDRout, Zout, Offsetout, R0out,group consisting of PCout, MDRout, Zout, Offsetout, R0out,
R1out, R2out, R3out and TEMPout .

Thus  do this natural grouping (of mutually exclusive Thus, do this natural grouping (of mutually exclusive 
signals) and then  -

Select anyone by a 4-bit code. 

Most fields must include one inactive code for the case 
in which no action is required.

Grouping control signals into fields requires a little 
more hardware because decoding circuits must be used to 
d d  th  bit tt  f h fi ld i t  i di id l t l decode the bit patterns of each field into individual control
signals.

The cost of this additional hardware is more than offset 
by the reduced number of bits in each microinstruction, 
which results in a smaller CONTROL store.



Only 20 bits are needed to store the patterns for the 42 signals



VERTICAL ORGANIZATION is
also possible, where compact 
codes are generated using 
highly encoded schemes.

HORIZONTALHORIZONTAL
ORGANIZATION



MICROPROGRAM  SEQUENCING

Having a separate microroutine for each machine Having a separate microroutine for each machine 
instruction results in a large total number of microinstructions 
and a large control store.

If most machine instructions involve several addressing 
modes, there can be many instruction and addressing mode 
combinations  A separate microroutine for each of these combinations. A separate microroutine for each of these 
combinations would produce considerable duplication of 
common parts.

Its better to organize the microprogram so that the 
microroutines share as many common parts as possible. This
requires many branch microinstructions to transfer control 
among the various parts.

e g  Consider an instruction of the type:e.g. Consider an instruction of the type:

Add   Rsrc,   Rdst

Addressing modes: Addressing modes: 
register, autoincrement, autodecrement, and  indexed, as 
well as the indirect  forms of these four modes.



Address indicated by
an OCTAL number;

Note minor change in 
notation of micro-
program instructions





Branch Address Modification using Bit-ORing

C id h i l b l d “ ” i h fi hiConsider the point labeled “! ” in the figure. At this

point, it is necessary to choose between actions required by 
direct  and indirect addressing modes. g

If the indirect mode is specified in the instruction, then 
the microinstruction in location 170 is performed to fetch the the microinstruction in location 170 is performed to fetch the 
operand from the memory. 

If the direct mode is specified  this fetch must be If the direct mode is specified, this fetch must be 
bypassed by branching immediately to location 171.

The most efficient way to bypass microinstruction 170 The most efficient way to bypass microinstruction 170 
is to have the preceding branch microinstructions specify the 
address 170 and then use an OR gate to change the least 
i ifi bi f hi dd if h di dd isignificant bit of this address to 1 if the direct addressing

mode is involved. 

This is known as the bit-ORing technique for modifying
branch addresses.



Wide BRANCH ADDRESSING

The instruction decoder {lnstDec}  generates the The instruction decoder {lnstDec}, generates the 
starting address of the microroutine that implements the 
instruction that has just been loaded into the IR. 

In our example, register IR contains the Add instruction,
for which the instruction decoder generates the micro-
instruction address 101, which cannot be loaded as is into the instruction address 101, which cannot be loaded as is into the 

microprogram counter ( PC).

The bit-ORing technique can be used at this point to g q p
modify the starting address generated by the instruction 
decoder to reach the appropriate path. 

Bit-Oring should change the address 101 to one of the 
five possible address values, 161, 141, 121, 101, or 111, 
depending on the addressing mode used in the instruction



Execute the instruction -
Add (Rsrc)+,  Rdst

The instruction has a 3-bit
field to specify the 
add essing mode fo  the addressing mode for the 
source operand, as above. 

Bit patterns:Bit patterns:
11, 10, 01, and 00, located 
in bits 10 and 9, denote the
indexed  autodecrement  indexed, autodecrement,
autoincrement,
and register modes,

ti l  respectively.

For each of these modes,
bit 8 is used to specify the bit 8 is used to specify the 
indirect version.



Add (R )+   Rd tAdd (Rsrc)+,  Rdst;

IR10-9 for Auto-increment 
mode:   01;;

IR8 = 0  (no Indirect);

Thus,Thus,

 PC5-3 = (010)2 = (2)8 ;

Modified  PC for

branching after (003)8 =
(121)8 ;(121)8 ;

Modified  PC for branching

after (123)8 =   (171)8 ; //Direct mode


