Functions of Control Unit

Sequencing

Causing the CPU to step through a series of microoperations

Execution

Causing the performance of each micro-op

Use of Control Signals to accomplish the task

Types of Control Signals

- Clock
 - One micro-instruction (or set of parallel microinstructions) per clock cycle
- Instruction register
 - Op-code for current instruction
 - Determines which micro-instructions are performed
- Flags
 - State of CPU
 - Results of previous operations
- From control bus
 - Interrupts
 - Acknowledgements

HARDWIRED CONTROL

The required control signals are determined by the following information:

- Contents of the control Step Counter
- Contents of the IR
- Contents of the condition code flags
- External I/P signals, MFC, IRQ etc.

Control Unit with Decoded Inputs

By separating the decoding and encoding functions, we obtain the more detailed block diagram in Figure 7.11. The step decoder provides a separate signal line for each step, or time slot, in the control sequence. Similarly, the output of the instruction decoder consists of a separate line for each machine instruction. For any instruction loaded in the IR, one of the output lines INS_1 through INS_m is set to 1, and all other lines are set to 0. (For design details of decoders, refer to Appendix A.) The input signals to the encoder block in Figure 7.11 are combined to generate the individual control signals Y_{in} , PC_{out}, Add, End, and so on. An example of how the encoder generates the Z_{in}

For an "ADD" instruction (ISA):

```
    PCout, MARin, READ, SEL #4, ADD, Zin
    .
    .
    .
    .
    .
    .
    MDRout, SEL Y, ADD, Zin
```

For a "Branch" instruction (ISA):

- 1. PCout,, Zin
- 2.
- 3.
- 4. Offset (IRout), ADD, Zin
- 5. Zout, PCin, END

$$Z_{in} = T_1 + T_6 . ADD + T_4 . BR +$$

END = $T_7 . ADD + T_5 . BR + (T_5 . CF + T_4 . CF') . BRN +$

When RUN = 0, the counter STOPS; required from W_MFC;

Design logic mostly based on FSM (Finite State machine)

$END = T_7.ADD + T_5.BR + (T_5.CF + T_4.CF').BRN +$

 $|Z_{in} = T_1 + T_6 \cdot ADD + T_4 \cdot BR + \dots$

FSM – based Hardware Control Unit design

Moore type machine necessary - output signal depends on the current state.

Next state depends on the input and current state.

Each state generates a set of control signals.

To implement any ISA, the system sequentially changes state from one to another. Control Unit implements the steps.

For a sequence of "N" steps, there are S_0 to S_{N-1} stages.

At each stage S_i : a set of outputs $O_{i,0}$ $O_{i,M-1}$ are generated, depending on the S_i .

Categories of control signals: functions for ALU, select of storage units, select of data routes (based on design).

Moore network example

The outputs of the combinational logic are the nextstate number and the control signals to be asserted for the current state.

The inputs to the combinational logic are the current state and any inputs used to determine the next state. In this case, the inputs are the instruction register opcode bits.

Notice that in the FSM for Hardwired Control, the outputs depend only on the current state, not on the inputs.

Identifying characteristic for a Moore machine is that the output depends only on the current state.

For a Moore machine, the box labeled combinational control logic can be split into two pieces. One piece has the control output and only the state input, while the other has only the next-state output.

OVERALL state machine diagram for CPU

Moore type machine - output signal depends on the current state.

Next state depends on the input and current state.

FIGURE C.3.3 The logic equations for the control unit shown in a shorthand form.

Output	Current states		Op	
PCWrite	state0 + state9	NT - (C) - 1		
PCWriteCond	state8	NextState1 =	$\text{State0} = 53 \cdot 52 \cdot 51 \cdot 32 \cdot 51 \cdot 5$	50 77
lorD	state3 + state5	NextState3 = S	State2 \cdot (Op[5-0] = lw)	
MemRead	state0 + state3			
MemWrite	state5	= ;	$83 \cdot 82 \cdot 81 \cdot 80 \cdot Op5 \cdot 6$	Op4 · Op3 · Op2 · Op1 · Op0
IRWrite	state0	NextState5 =	State $2 \cdot (Op[5-0] = sw$	0
MemtoReg	state4	Same and the		
PCSource1	state9	=	$s_3 \cdot s_2 \cdot s_1 \cdot s_0 \cdot Op_5 \cdot I$	Op4 · Op3 · Op2 · Op1 · Op0
PCSource0	state8	NextState7 =	State6 = $\overline{S3} \cdot S2 \cdot S1 \cdot \overline{S1}$	50
ALUOp1	state6			
ALUOp0	state8	NextState9 =	State1 \cdot (Op[5-0] = jm	p)
ALUSrcB1	state1 +state2	_	<u> </u>	$\overline{\mathbf{Op}}$, $\overline{\mathbf{Op}}$, $\overline{\mathbf{Op}}$, \mathbf{Op} , \mathbf{Op}
ALUSrcB0	state0 + state1	- ,	35 · 32 · 31 · 30 · Op5 ·	0p4 · 0p3 · 0p2 · 0p1 · 0p0
ALUSrcA	state2 + state6 + state8	MCO to the Install		
RegWrite	state4 + state7	NSU is the logical	sum of all these terms.	
RegDst	state7			
NextState0	state4 + state5 + state7 -	+ stato8 + stato9		
NextState1	state0			
NextState2	state1		(Op = ']w')+(Op = 'sw')	
NextState3	state2		(Op = ']w')	
NextState4	state3			
NextState5	state2		(Op = 'sw')	
NextState6	state1		(Op = 'R-type')	
NextState7	state6			
NextState8	state1		(Op = 'beq')	
NextState9	state1		(Op='jmp')	

FIGURE C.3.3 The logic equations for the control unit shown in a shorthand form.

Break the control function into two parts:

- the next-state outputs, which depend on all the inputs,

and

- the control \rightarrow signal outputs, which depend only on the current-state bit

Let's look at a ROM-based implementation, first.

s3	s2	s1	s0
0	0	0	0
1	0	0	1
- Truth And	ale fee DOI	lait a	-

a. Iruth table for PCWrite

s3	<mark>s2</mark>	s1	s0
0	0	0	0
0	0	1	1

d. Truth table for MemRead

s3	s2	s1	s0
0	1	0	0
g. Truth ta	ble for Me	mtoReg	

s3	s2	s1	s0
0	1	1	0

j. Truth table for ALUOp1

	s3	s2	s1	s0
6	0	0	0	0
	0	0	0	1

m. Truth table for ALUSrcBO

s3	s2	s1	s0
0	1	1	1

p. Truth table for RegDst

s3	s2	s1	s0
1	0	0	0

b. Truth table for PCWriteCond

s3	s2	s1	s0
0	1	0	1

e. Truth table for MemWrite

s3	s2	s1	s0		
1	0	0	1		
h. Truth ta	h. Truth table for PCSource1				

s3 **s2** s0 **s1** 1 0 0 0

k. Truth table for ALUOp0

s3	s2	s1	s0
0	0	1	0
0	1	1	0
1	0	0	0

n. Truth table for ALUSrcA

s3	s2	s1	s0
0	0	1	1
0	1	0	1

c. Truth table for lorD

s 3	s2	s1	s0	
0	0	0	0	

f. Truth table for IRWrite

s3	s2	s1	s0					
1	0	0	0					
i. Truth table for PCSource0								

	s3	s2	s1	s0						
	0	0	0	1						
	0	0	1	0						
Ī	Truth table for ALUSrcB1									

s3	s2	s1	s0
0	1	0	0
0	1	1	1

o. Truth table for RegWrite

FIGURE C.3.4 The truth tables are shown for the 16 datapath control signals that depend only on the current-state input bits, which are shown for each table. Each truth table row corresponds to 64 entries: one for each possible value of the 6 Op bits. Notice that

Outputs				Inp	ut value	es (S[3-	-0])			
	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001
PCWrite	1	0	0	0	0	0	0	0	0	1
PCWriteCond	0	0	0	0	0	0	0	0	1	0
lorD	0	0	0	1	0	1	0	0	0	0
MemRead	1	0	0	1	0	0	0	0	0	0
MemWrite	0	0	0	0	0	1	0	0	0	0
IRWrite	1	0	0	0	0	0	0	0	0	0
MemtoReg	0	0	0	0	1	0	0	0	0	0
PCSource1	0	0	0	0	0	0	0	0	0	1
PCSource0	0	0	0	0	0	0	0	0	1	0
ALUOp1	0	0	0	0	0	0	1	0	0	0
ALUOp0	0	0	0	0	0	0	0	0	1	0
ALUSrcB1	0	1	1	0	0	0	0	0	0	0
ALUSrcB0	1	1	0	0	0	0	0	0	0	0
ALUSrcA	0	0	1	0	0	0	1	0	1	0
RegWrite	0	0	0	0	1	0	0	1	0	0
RegDst	0	0	0	0	0	0	0	1	0	0

FIGURE C.3.6 The truth table for the 16 datapath control outputs, which depend only on the state inputs. The values are determined from Figure C.3.4. Although there are 16 possible values for the 4-bit state field, only 10 of these are used and are shown here. The 10 possible values are shown at the

Lower 4 bits of the address	Bits 19–4 of the word
0000	100101000001000
0001	00000000011000
0010	00000000010100
0011	00110000000000
0100	0000010000010
0101	001010000000000
0110	000000001000100
0111	00000000000011
1000	010000010100100
1001	10000010000000

FIGURE C.3.7 The contents of the upper 16 bits of the ROM depend only on the state inputs. These values are the same as those in Figure C.3.6, simply rotated 90°. This set of control words would be duplicated 64 times for every possible value of the upper 6 bits of the address.

e.g.: **PCWrite** is high in states 0 and 9; this corresponds to addresses with the 4 low-order bits being either 0000 or 1001. The bit will be high in the memory word independent of the inputs Op[5–0], so the addresses with the bit high are 00000000, 000001001, 0000010000, 000001001, 0000010000, 0000011001, ..., 1111110000, 1111111001.

The general form of this is XXXXX0000 or XXXXX1001.

Op5	Op4	Op3	Op2	Op1	Op0	S 3	S 2	S1	S 0
X	Х	Х	Х	Х	Х	0	0	0	0
1	0	0	0	1	1	0	0	1	0
1	0	1	0	1	1	0	0	1	0
X	Х	Х	Х	Х	X	0	1	1	0
0	0	0	0	1	0	0	0	0	1

d. The truth table for the NSO output, which is active when the next state is 1, 3, 5, 7, or 9. This happens only if the current state is one of 0, 1, 2, or 6.

The truth table for <u>next-state output</u> bit (NS[0]).

The next-state outputs depend on the value of Op[5–0], which is the opcode field, and the current state, given by S[3–0] NextState1 = State0 = $\overline{S3} \cdot \overline{S2} \cdot \overline{S1} \cdot \overline{S0}$ NextState3 = State2 · (Op[5-0] = lw) = $\overline{S3} \cdot \overline{S2} \cdot S1 \cdot \overline{S0} \cdot Op5 \cdot \overline{Op4} \cdot \overline{Op3} \cdot \overline{Op2} \cdot Op1 \cdot Op0$ NextState5 = State2 (Op[5-0] = sw) = $\overline{S3} \cdot \overline{S2} \cdot S1 \cdot \overline{S0} \cdot Op5 \cdot \overline{Op4} \cdot Op3 \cdot \overline{Op2} \cdot Op1 \cdot Op0$ NextState7 = State6 = $\overline{S3} \cdot S2 \cdot S1 \cdot \overline{S0}$ NextState9 = State1 · (Op[5-0] = jmp) = $\overline{S3} \cdot \overline{S2} \cdot \overline{S1} \cdot S0 \cdot \overline{Op5} \cdot \overline{Op4} \cdot \overline{Op3} \cdot \overline{Op2} \cdot Op1 \cdot \overline{Op0}$

NS0 is the logical sum of all these terms.

Op5	Op4	Op3	Op2	Op1	Op0	S 3	S2	S1	S 0
X	Х	Х	Х	Х	Х	0	0	0	0
1	0	0	0	1	1	0	0	1	0
1	0	1	0	1	1	0	0	1	0
X	Х	Х	Х	X	X	0	1	1	0
0	0	0	0	1	0	0	0	0	1

d. The truth table for the NSO output, which is active when the next state is 1, 3, 5, 7, or 9. This happens only if the current state is one of 0, 1, 2, or 6.

The four truth tables for the four next-state output bits (NS[3-0]).

The next-state outputs depend on the value of Op[5–0], which is the opcode field, and the current state, given by S[3–0].

	opo	op-1	- opo	ohr	ohr	opo			<u> </u>	
I	0	0	0	0	1	0	0	0	0	1
	0	0	0	1	0	0	0	0	0	1

a. The truth table for the NS3 output, active when the next state is 8 or 9. This signal is activated when the current state is 1.

	Op5	Op4	ОрЗ	Op2	Op1	ОрО	53	52	S1	S 0
Ī	0	0	0	0	0	0	0	0	0	1
Î	1	0	1	0	1	1	0	0	1	0
	X	Х	X	Х	Х	X	0	0	1	1
	X	X	X	Х	Х	X	0	1	1	0

outputs depend b. The truth table for the NS2 output, which is active when the next state is 4, 5, 6, or 7. This situation occurs when the current state is one of 1, 2, 3, or 6.

h	Op5	Op4	Op3	Op2	Op1	0р0	S 3	S2	S1	S 0
	0	0	0	0	0	0	0	0	0	1
	1	0	0	0	1	1	0	0	0	1
	1	0	1	0	1	1	0	0	0	1
	1	0	0	0	1	1	0	0	1	0
)]	X	X	X	Х	Х	X	0	1	1	0
	e Tho ta	ith table fo	r the NC1 -	output whi	iob in notiv	a when the	a most atata	nie 2 2 G	or 7 The	most state

The truth table for the NS1 output, which is active when the next state is 2, 3, 6, or 7. The next state is one of 2, 3, 6, or 7 only if the current state is one of 1, 2, or 6.

		Op [5–0]										
Current state S[3–0]	000000 (R-format)	000010 (jmp)	000100 (beq)	100011 (lw)	101011 (SW)	Any other value						
0000	<0001	0001	0001	0001	0001	0001						
0001	0110	1001	1000	0010	0010	illegal						
0010	XXXXX	XXXXX	XXXXX	0011	0101	illegal						
0011	0100	0100	0100	0100	0100	lliegal						
0100	0000	0000	0000	0000	0000	illegal						
0101	0000	0000	0000	0000	0000	illegal						
0110	<0111	0111	0111	0111	0111	illegal						
0111	0000	0000	0000	0000	0000	lliegal						
1000	0000	0000	0000	0000	0000	illegal						
1001	0000	0000	0000	0000	0000	illegal						

FIGURE C.3.8 This table contains the lower 4 bits of the control word (the NS outputs), which depend on both the state inputs, S[3-0], and the opcode, Op [5-0], which correspond to the instruction opcode. These values can be determined from Figure C.3.5. The opcode name is shown under the encoding in the heading. The 4 bits of the control word whose address is given by the current-state bits and Op bits are shown in each entry. For example, when the state input bits are 0000, the output is always 0001, independent of the other inputs; when the state is 2, the next state is don't care for three of the inputs, 3 for 1W, and 5 for SW. Together with the entries in Figure C.3.7, this table specifies the contents of the control unit ROM. For example, the word at address 1000110001 is obtained by finding the

Lower 4 bits of the address	Bits 19–4 of the word
0000	1001010000001000
0001	00000000011000
0010	00000000010100
0011	001100000000000
0100	000000100000010
0101	001010000000000
0110	000000001000100
0111	000000000000011
1000	0100000010100100
1001	100000010000000

The entry from the top yields 000000000011000, while the appropriate entry in the table below is 0010. Thus the control word at address 1000110001 is 0000000000110000010.

The column labeled "Any other value" applies only when the Op bits do not match one of the specified opcodes.

For example, the word at address **1000110001** is obtained by finding (i) the upper 16 bits from the table on top, using only the state input bits (0001) and (ii) concatenating the lower 4 bits found by using the entire address (0001 to find the row and **100011** to find the column).

	Op [5–0]											
urrent state \$[3–0]	000000 (R-format)	000010 (jmp)	000100 (beq)	100011 (lw)	101011 (SW)	Any other value						
0000	0001	0001	0001	0001	0001	0001						
0001	0110	1001	1000 🤇	0010	0010	illegal						
0010	XXXX	XXXX	XXXX	0011	0101	illegal						
0011	0100	0100	0100	0100	0100	lliegal						
0100	0000	0000	0000	0000	0000	lliegal						
0101	0000	0000	0000	0000	0000	lliegal						
0110	0111	0111	0111	0111	0111	illegal						
0111	0000	0000	0000	0000	0000	lliegal						
1000	0000	0000	0000	0000	0000	lliegal						
1001	0000	0000	0000	0000	0000	lliegal						

For ALU Control & simple CPU control lines – check slides:

32 - 35

TYPES of PLDS:

- PAL PAL devices have arrays of transistor cells arranged in a "fixed-OR, programmable-AND" plane used to implement "sum-ofproducts" binary logic equations
- PLA The PLA (also FPLA) has a set of programmable AND gate planes, which link to a set of programmable OR gate planes, which can then be conditionally complemented to produce an output. This layout allows for a large number of logic functions to be synthesized in the sum of products (and sometimes product of sums) in canonical forms.
- GAL The GAL (Generic Array Logic) was an improvement on the PAL because one device was able to take the place of many PAL devices or could even have functionality not covered by the original range. Its primary benefit, however, was that it was erasable and reprogrammable making prototyping and design changes easier for engineers.
- A similar device called a PEEL (programmable electrically erasable logic) was introduced by the International CMOS Technology (ICT) corporation.

 FPGA - FPGAs contain programmable logic components called "logic blocks", and a hierarchy of reconfigurable interconnects that allow the blocks to be "wired together" - somewhat like a one-chip programmable breadboard.

The most common FPGA architecture consists of an array of configurable logic blocks (CLBs), I/O pads, and routing channels. Generally, all the routing channels have the same width (number of wires). Multiple I/O pads may fit into the array – programmable using HDL.

- CPLD between PALs and FPGAs. Has ROM and hence nonvolatile. Handles complex logics with feedback and arithmetic operations.
- ROM –

- **PLC** Automation of machinery control a small embedded system
- PLL ??

Various optimizers and sequencers are used for efficient design.

Difficult to design when complex operations/instructions are necessary – Floating point, superscalar, pipelining etc.

Correcting errors and debugging is difficult

How do you implement <u>W(MFC)</u> in this state machine ??

Minor modifications of the ISA requires lot of changes and redo the design.

Complex instructions may require to go through several states and signals to be generated

Many opcodes – the design may require a RISE lab./hall for generating the truth table.

Step Action

- 1 PCout, MARin, Read, Select4, Add, Zin
- 2 Zout, PCin, Yin, WMFC
- 3 MDR_{out}, IR_{in}
- 4 R3out, MARin, Read
- 5 R1_{out}, Y_{in}, WMFC
- 6 MDR_{out}, SelectY, Add, Z_i,

 $\mathbf{Z}_{out}, \, \mathbf{R1}_{in}, \, \mathbf{End}$

7

Microprogramming

← Micro-Instructions for:

0																	
Add, Zin			••	l in		out			ب							ပ္ဆ	
instruction	••	PCin	PC _{ou}	MAR	Read	MDR	IR _{in}	Y _{in}	Selec	Add	Z _{in}	Zout	R1ou	$R1_{in}$	R3 _{ou}	IWM	End
1		0	1	1	1	0	0	0	1	1	1	0	0	0	0	0	0
2		1	0	0	0	0	0	1	0	0	0	1	0	0	0	1	0
3		0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0
4		0	0	1	1	0	0	0	0	0	0	0	0	0	1	0	0
5		0	0	0	0	0	0	1	0	0	0	0	1	0	0	1	0
6		0	0	0	0	1	0	0	0	1	1	0	0	0	0	0	0
7		0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	1
									5						l	(

The μPC is incremented every time a new microinstruction is fetched from the micro-program (Control Store) memory, except in the following situations:

1. When a new instruction is loaded into the IR, the μ PC is loaded with the starting address of the micro-routine for that instruction.

2. When a Branch microinstruction is encountered and the branch condition is satisfied, the μ PC is loaded with the branch address.

3. When an End microinstruction is encountered, the μ PC is loaded with the address of the first CW in the microroutine for the instruction fetch cycle (this address is 0).

Drawbacks of this simple micro-instrcn. system:

- assigning individual bits to each control signal results in long microinstructions because the number of required signals is usually large.

- only a few bits are set to 1 (for active gating) in any given microinstruction, which means the available bit space is poorly used.

Assume:

In total, 42 control signals are needed.

e.g.

- Read, Write, Select, WMFC, End;
- Add, Subtract, AND, and XOR;
- Separate signals to R_i's ; PC, IR, MAR, MDR etc.

42 bits would be needed in each microinstruction. Fortunately, the length of the microinstructions can be reduced easily. Most signals are not needed simultaneously, and many signals are mutually exclusive.

For example, only one function of the ALU can be activated at a time. The source for a data transfer must be unique because it is not possible to gate the contents of two different registers onto the bus at the same time. Read and Write signals to the memory cannot be active simultaneously.

This suggests that signals can be grouped so that all mutually exclusive signals are placed in the same group. Thus, at most one *microoperation per group is specified in any microinstruction* For example, four bits suffice to represent the 16 available functions in the ALU.

Register output control signals can be placed in a group consisting of $PC_{out'} MDR_{out'} Z_{out'} Offset_{out'} RO_{out'} R1_{out'} R3_{out}$ and $TEMP_{out}$.

Thus, do this natural grouping (of mutually exclusive signals) and then -

Select anyone by a 4-bit code.

Most fields must include one inactive code for the case in which no action is required.

Grouping control signals into fields requires a little more hardware because decoding circuits must be used to decode the bit patterns of each field into individual control signals.

The cost of this additional hardware is more than offset by the reduced number of bits in each microinstruction, which results in a smaller CONTROL store.

Microinstruction							
F1	F2	F3	F4	F5	F6	F7	F8
F1 (4 bits)	F2 (3 bits)	F3 (3 bits)	F4 (4 bits)	F5 (2 bits)	F6 (1 bit)	F7 (1 bit)	F8 (1 bit)
0000: No transfer 0001: PC _{out}	000: No transfer 001: PC _{in}	000: No transfer 001: MAR _{in}	0000: Add 0001: Sub	00: No action 01: Read	0: SelectY 1: Select4	0: No action 1: WMFC	0: Continue 1: End
0010: MDR _{out} 0011: Z _{out}	010: IR _{in} 011: Z _{in} 100: PO	010: MDR _{in} 011: TEMP _{in}	1111: XOR	10: Write			
0100: R0 _{out} 0101: R1 _{out} 0110: R2 _{out}	100: R0 _{in} 101: R1 _{in} 110: R2 _{in}	100. 1 in	16 ALU				
0111: R3 _{out} 1010: TEMP _{out} 1011: Offset _{out}	111: R3 _{in}		runctions				

Only 20 bits are needed to store the patterns for the 42 signals

Microinstruction

F1	F2	F3	F4	F5	F5		
F1 (4 bits)	F2 (3 bits)	F3 (3 bits)	F4 (4 bits)	F5 (2 bi	ts)	-	
0000: No transfer 0001: PC _{out} 0010: MDR _{out} 0011: Z _{out} 0100: R0 _{out} 0101: R1 _{out} 0110: R2 _{out}	000: No transfer 001: PC _{in} 010: IR _{in} 011: Z _{in} 100: R0 _{in} 101: R1 _{in} 110: R2 _{in}	000: No transfer 001: MAR _{in} 010: MDR _{in} 011: TEMP _{in} 100: Y _{in}	0000: Add 0001: Sub : 1111: XOR 16 ALU	00: No a 01: Read 10: Writ	action d æ H	łO RG	R] Al
0111: R3 _{out} 1010: TEMP _{out} 1011: Offset _{out}	111: R3 _{in}			Micro - instruction	••	PCin	PC _{out}
				1		0	1
				3		0	0
				4		0	0

VERTICAL ORGANIZATION is also possible, where compact codes are generated using highly encoded schemes.

HORIZONTAL ORGANIZATION

Micro - instruction	••	PC _{in}	PC _{out}	MAR _{in}	Read	MDRout	IR _{in}	Y _{in}	Select	Add	Z _{in}	Zour	R1 _{out}	R1 _{in}	R3 _{out}	WMFC	End	
1		0	1	1	1	0	0	0	1	1	1	0	0	0	0	0	0	
2		1	0	0	0	0	0	1	0	0	0	1	0	0	0	1	0	
3		0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	
4		0	0	1	1	0	0	0	0	0	0	0	0	0	1	0	0	
5		0	0	0	0	0	0	1	0	0	0	0	1	0	0	1	0	
6		0	0	0	0	1	0	0	0	1	1	0	0	0	0	0	0	
7		0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	1	

MICROPROGRAM SEQUENCING

Having a separate microroutine for each machine instruction results in a large total number of microinstructions and a large control store.

If most machine instructions involve several addressing modes, there can be many instruction and addressing mode combinations. A separate microroutine for each of these combinations would produce considerable duplication of common parts.

Its better to organize the microprogram so that the microroutines share as many common parts as possible. This requires many branch microinstructions to transfer control among the various parts.

e.g. Consider an instruction of the type:

Add R_{src}, R_{dst}

Addressing modes:

register, autoincrement, autodecrement, and indexed, as well as the indirect forms of these four modes.

Branch Address Modification using <u>Bit-OR</u>ing

Consider the point labeled " α " in the figure. At this point, it is necessary to choose between actions required by direct and indirect addressing modes.

If the indirect mode is specified in the instruction, then the microinstruction in location 170 is performed to fetch the operand from the memory.

If the direct mode is specified, this fetch must be bypassed by branching immediately to location 171.

The most efficient way to bypass microinstruction 170 is to have the preceding branch microinstructions specify the address 170 and then use an OR gate to change the least significant bit of this address to 1 if the direct addressing mode is involved.

This is known as the *bit-ORing technique for modifying branch addresses.*

The instruction decoder {InstDec}, generates the starting address of the microroutine that implements the instruction that has just been loaded into the IR.

In our example, register IR contains the Add instruction, for which the instruction decoder generates the microinstruction address 101, which cannot be loaded as is into the microprogram counter (μPC).

The bit-ORing technique can be used at this point to modify the starting address generated by the instruction decoder to reach the appropriate path.

Bit-Oring should change the address 101 to one of the five possible address values, 161, 141, 121, 101, or 111, **depending on the addressing mode** used in the instruction

Execute the instruction -Add (Rsrc)+, Rdst

Aud (r	(SFC)T, KUSL			N	10de	_			
Address	Contents of IR Microinstruction	OP cod	e	0	1 0		Rsrc	Rdst	
(octal)		//	11	10		87	4	3	0
000	PCout, MARin, Read, Select4, Add, 2	Z _{in}	The i field to	ns) s	tru pec	cti cti	on ha the	s a 3-	bit
001	\mathbf{Z}_{out} , \mathbf{PC}_{in} , \mathbf{Y}_{in} , WMFC		addres	si	۱ g ا	mo	de foi	r the	
002	MDR _{out} , IR _{in}		source	0	per	an	d, as a	above	
003	$\mu \text{Branch} \{\mu \text{PC} \leftarrow 101 \text{ (from Instruct} \\ \mu \text{PC}_{5,4} \leftarrow [\text{IR}_{10,9}]; \mu \text{PC}_3 \leftarrow [\overline{\text{IR}_{10}}] \cdot [\overline{\text{IR}_{10}}] \}$	ion decoder); IR ₉] · [IR ₈]}	Bit	pa	tte	rns an	5: d 00	locate	A
121	Rsrcout, MARin, Read, Select4, Add,	Zin	in hits	', \ 1 (′⊥,) ar	an vd	9 der	iocale inte th	יע ופ
122	Zout, Rsrcin		indexe	d ,		toc	Jecren	nent,	
123	μ Branch { μ PC \leftarrow 170; μ PC ₀ \leftarrow [IR		autoin	cre	eme	ent	t,		
170	MDRout, MARin, Read, WMFC		and reg	gis	ster	· m	odes,		
171	MDR _{out} , Y _{in}		respec	tiv	ely	/ _	-		
172	Rdstout, SelectY, Add, Zin		Eor	07	ch	∽f	those	mode	
173	Zout, Rdstin, End	ve av annene var värnnarnarnarnarninskinnard	bit 8 is		sed	tc sio) spec	ify the	32,

16-1

Microinstruction for Add (Rsrc)+,Rdst.

Address	Microinstruction	Mode									
(octal)	Contents of IR	OP code	I	0 1 0		Rsrc	Rdst				
000	PCout, MARin, 1	·//	11	10	8	7	4 3 0				
001	Zout, PCin, Yin, WMFC						Delete				
002	MDR _{out} , IR _{in}		AC		(RS	src)+,	Rast;				
003	μ Branch { μ PC \leftarrow 101 (from Ir	struction decoder);	IR₁₀₋₉ for Auto-increment								
	$\mu \text{PC}_{5,4} \leftarrow [\text{IR}_{10,9}]; \mu \text{PC}_3 \leftarrow [\overline{\text{IR}}]$	$\overline{[10]} \cdot [\overline{\mathbb{IR}_9}] \cdot [\mathbb{IR}_8]$	mode: 01;								
121	Rsrcout, MARin, Read, Select4	, Add, Z _{in}	$IR_8 =$	0	(n)	o Indi	rect);				
122	Zout Rsrcin		Thur								
123	μ Branch { μ PC \leftarrow 170; μ PC ₀	$\leftarrow [\overline{IR_8}]$, WMFC	inus,								
170	MDRout, MARin, Read, WMF	2	μ ΡC ₅₋₃	3 =	= (0	10) ₂ =	: <mark>(2)</mark> ₈ ;				
171	MDR _{out} , Y _{in}			-	-						
172	Rdstout, SelectY, Add, Zin		Modif	iec		PC for					
173	Zout, Rdstin, End	inin modullanoone of an annananananananananananan	branc (121)	hi 8	ng a	after (003) ₈ =				

Microinstruction for Add (Rsrc)+,Rdst.

Modified μ PC for branching after (123)₈ = (171)₈; //Direct mode