Functions of Control Unit

“* Sequencing
» Causing the CPU to step through a series of micro-
operations

“* Execution
» Causing the performance of each micro-op

“*Use of Control Signals to accomplish the task




Types of Control Signals
» Clock

0 One micro-instruction (or set of parallel micro-
instructions) per clock cycle

 Instruction register
» Op-code for current instruction
» Determines which micro-instructions are performed

° Flang
H\J

1 1A

»  State of CPU
»  Results of previous operations

» From control bus
» Interrupts
»  Acknowledgements
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HARDWIRED CONTROL

The required control signals are determined by the
following information:

Contents of the control Step Counter
Contents of the IR
Contents of the condition code flags

External I/P signals, MFC, IRQ etc.
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By separating the decoding and encoding functions, we obtain the more detailed block
diagram in Figure 7.11. The step decoder provides a separate signal line for each step,
or time slot, in the control sequence. Similarly, the output of the instruction decoder
consists of a separate line for each machine instruction. For any mstruction loaded in
the IR, one of the output lines INS; through INS,, is set to 1, and all other lines are
set to 0. (For design details of decoders, refer to Appendix A.) The input signals to the
encoder block in Figure 7.11 are combined to generate the individual control signals
Y;,, PC,., Add, End, and so on. An example of how the encoder generates the Z,,




For an “ADD” instruction (ISA): For a “Branch” instruction (ISA):

PCout, MARIn, READ, SEL #4, ADD, Zin

Offset (IRout), ADD, Zin

1.
2.
3.
4
5 Zout, PCin, END

1.
2
3.
4,
5
6. MDRout, SEL Y, ADD, Zin

Z =T +T..ADD+T,BR+.....

END = T,.ADD + T..BR + (T;.CF + T,.CF’).BRN +....

When RUN = 0, the counter STOPS; required from W_MFC;

Design logic mostly based on FSM (Finite State machine)




Z =T +T..ADD+T, BR+.....

Branch Add

Add ‘ Branch

Ty

End

END =T, ADD + T..BR + (T;.CF + T,.CF’).BRN +....




FSM - based Hardware Control Unit _design

Moore type machine necessary - output signal depends on the
current state.

Next state depends on the input and current state.

Each state generates a set of control signals.

To implement any ISA, the system sequentially changes state from
one to another. Control Unit implements the steps.

For a sequence of “"N” steps, there are Sy t0 Sy _; stages.

At each stage S;: a set of outputs O; (....0; \_; are generated,
depending on the S;.

Categories of control signals: functions for ALU, select of storage
units, select of data routes (based on design).




Typical Moore State Graph

Moore state table

A* B* Z (Present
X=0 X=1 output)
S, 00 S, 00 11 S, 0
S,01 S, 00 11 S, 1
S,11 S,11 10 S, 1
S;10 S;10 01 S, 0
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The outputs of the combinational logic are the next-
state number and the control signals to be asserted for the
current state.

The inputs to the combinational logic are the current
state and any inputs used to determine the next state. In
this case, the inputs are the instruction register opcode
bits.

Notice that in the FSM for Hardwired Control, the
outputs depend only on the current state, not on the
inputs.

Identifying characteristic for a Moore machine is that
the output depends only on the current state.

For a Moore machine, the box labeled combinational
control logic can be split into two pieces. One piece has the
control output and only the state input, while the other has
only the next-state output.
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Control logic
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Output Current states Y Instruction fetch

Instruction decode/
register fetch

- MemRead

PCWrite state0 + stateD apoRead
PCWrteCond states lorD =D ALUSrcA =D

Start IRWrite ALUSreB = 11
lorD stated + states ALUSrcB = 01 ALUOp = 00
MemRead stateD + stated TS
MemWrite states
IRWrite statel Memory address - Branch jump
MemtoReg stated computation Execution completion ;;:n'plc-ticr'
PCSourcel statey

ALUSrecA = 1 ALUSrCA =1 ALUSreB = 00
PCSourcal stated ALUSFCE = 10 ST e
ALU'DFI-'_'L stataf ALUCp =00 ALUOp= 10 PCWriteCond PCSource = 10
PCSource =01
ALLOp states
Al USrcB1 statel +state?
Al USrcBO statel + statel emony
Al USrcA state? + stated + states f _access Y  R-type completion
- 3 7
RegWrite stated + stata’7
RegDist stateT MemRead e
MaoxtStatal statod + statoh + stato? MemitcReg =0
MextStatel statel
MextStata2 statel
NextState3 o Y Write back step
MextStated state3
RegDst=0

MextStateb state? RegWrite - Y
NextStates statel MemioRea=1
MextStataT statob
NextStata8 statedl (Op="beq")
NextStated statel (Op="Jmp")

FIGURE C.3.3 The logic equations for the control unit shown in a shorthand form.




T C

PCWrite statal + stated ! — _— 1 __

PCWrieCond mr— NextStatel = StateD = 53.52.51-50

borD stated + stated NextState3 = State2 - (Op[5-0] = Iw)

MemRead statel + stated —_ —

MemWrite =iaieh = 53.52-51-80-0p5-0pd . Op3 - Op2
IRWrite stated NextState5 = State 2 - (Op[5-0] = sw)

MamtoReg stated plr e {1 PR, s
PCSourcel — = 53-52-81-80-0p5-0Opd - Op3d - Op2
PUSource stated NextState7 = State6 = S3-S2 .51 - 50

ALUOp1 statef

ALUOpO stated NextState9 = Statel - (Op|[5-0] = jmp)

ALUSrcB1 statel +state2 _ §3.57.5]1.50. Op5 - Opd - Op3 - Op2 -
ALUSrcBO statel + statel

:t::ri Ei : :E:E? * stated NS0 is the logical sum of all these terms.

RepDst stata T

MNextStatol gtatod + statob + state? + stato8 + statod

MextStatel statel

MextState? statel (Op="Tw")}+{0p="5W")

MextStated state? (Op="1w")

MextStated stated

MextStates state? (Op="sw")

NextStatof statol (Op = 'Rtype’)

MextState7 statob

NextStato8 statel (Op="beq")

NextStated statol (Op="Jmp")

FIGURE C.3.3 The logic equations for the control unit shown in a shorthand form.
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Break the
control function
into two parts:

- the next-state
outputs, which
depend on all the
inputs,

and

- the control -
signhal outputs,
which depend
only on the
current-state bits

Let’'s look at
a ROM-based

implementation,
first.

0 1] 0 0

1 1] 0

a. Truth table for PCWrite

BN N N N
Q 1] a0 1]

0 1] 1

d. Truth table for MemRead

ENENENIEN
a 1 0 0

g. Truth table for MemtoReg

ENERENEN
| Q | 1 1 1] |

j- Truth table for ALUOp1
EREIENEN
0 1] 0 1]

0 1] 0 1

m. Truth table for ALUSCED

1 1 |

| 0 1

p. Truth table for RegDst

|1 0 0 .;:.|

b. Truth table for PCWrteCond

IEENEERIE
0 | 1 | Q 1

e. Truth table for MemWrita

| 8 | 2 | a2 | o |
1 0 a 1

h. Truth table for PCSourcel

| s | 2 | s | w0 |
1 | a | Q 1]

k. Truth table for ALUOpO
I =
0 a 1 1]

0 1 1

1 0 aQ
n. Truth table for ALUSrcA

1] 0 1 1

1] 1 0 1

¢. Truth table for lorD

BN T
| 1] a0 0 | a |

f. Truth table for IRWrite

ENENENEN
1 0 0 0

i. Truth table for PCSourced
Q 0 0 1
0 0 1 0
. Truth table for ALUSmcB1
i} 1 0 0
0 1 1 1

o. Truth table for RegWrita

FIGURE C.2.4 The truth tables are shown for the 18 datapath control signals that depend only on the current-state input
bits, which are shown for each table. Each truth table row corresponds to 64 entries: one for each possible value of the 6 Op bits. Notice that




m Input values (S[2-0])

@000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001
PCWrite 1 0 0 0 0 0 0 0 0 1
PCWriteCond 0 o 0 0 0 0 0 0 1 0
lorD 0 o 0 1 0 1 0 0 0 0
MemRead 1 o 0 1 0 0 0 0 0 0
MemWrite 0 o 0 o 0 1 0 0 0 0
IRWrite 1 0 0 0 0 0 0 0 0 0
MemtoReg 0 0 0 0 1 o 0 0 0 0
PCSourcel 0 o 0 0 0 0 0 0 0 1
PCSourcel 0 o 0 o 0 0 0 0 1 0
ALUOp1 0 o 0 o 0 0 1 0 0 0
ALUCpO 0 o 0 o 0 0 0 0 1 0
ALUSrcB1 0 1 1 o 0 O 0 0 0 0
ALUSrcBO 1 1 0 0 0 0 0 0 0 0
ALUSrcA 0 o 1 o 0 0 1 0 1 0
RapWrte 0 ] 0 il 1 ] 0 1 0 0
RegDst 0 o 0 o 0 0 0 1 0 0

FIGURE C.2.6 The truth table for the 16 datapath control cutputs, which depend only on
the state inputs. The values are determined from Figure C.3.4. Although there are 16 possible values for

the 4-bat state field, only 10 of these are used and are shown here. The 10 possible values are shown at the




Lowear 4 bits of the address Bits 19-4 of the word

0000 100101 0000001000
0001 O00Q0000000011000
0010 O00CG0000000010100
0011 0011 000000000000
0100 0000001 000000010
0101 00101 00000000000
0110 O00CQ0000001000100
0111 O00CG0000000000011
1000 0100000010100100
1001 1 000001 GO000000

FIGURE C.3.T The contents of the upper 18 bits of the ROM depend only on the state

inputs. These values are the same as those in Figure C.3.6, simply rotated 90°. Thas set of control words
would be duplicated 64 times for every possible value of the upper 6 bats of the address.

e.g.: PCWrite is high in states 0 and 9; this corresponds to
addresses with the 4 low-order bits being either 0000 or
1001. The bit will be high in the memory word independent of
the inputs Op[5-0], so the addresses with the

bit high are 000000000, 0000001001, 0000010000,
0000011001, ...,1111110000,1111111001.

The general form of this is XXXXXX0000 or XXXXXX1001.
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d. The truth table for the NSO output, which is active when the next stateis 1, 3, 5, 7, or 9. This happens

only if the current state is one of 0, 1, 2, or 6.

The truth table for

next-state output bit
(NS[O0]).

The next-state
outputs depend on the
value of Op[5-0],
which is the opcode
field, and the current
state, given by S[3-0]

NextStatel
NextStated

NextState5

NextState/
MNextState9

2
= State 2
= 53 |S2.

Stat
Statg
53 |5

Sta

= §3.52.51.50

N Op|5-0] = Iw)
151-50. Op5- Opd - Op3 - Op2 -

(Op[5-0] = sw)
S1.50. Op5-Opd - Op3 . Op?
y |= §3.82.51.50

= Statk1/ (Op|5-0] = jmp)

= 53.52.51.50.0p5 - Opd . Op3 - Op2 -

NS0 is the logical sum of all these terms.
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d. The truth table for the NSO output, which is active when the next stateis 1, 3, 5, 7, or 9. This happens
only if the cument state isone of 0, 1, 2, or 6.

The four truth
tables for the
four next-state
output bits
(NS[3-0]).

The next-stat

0 ) 0 0 1 0 ) 0 0 1

0 ) 0 1 0 0 ) 0 0 1

a. The truth table for the NS3 output, active when the next state is 8 or 9. This signal is activated when
the cument state is 1.

outputs depend
on the value of
Op[5-0], which
iIs the opcode
field, and the
current state,

given by S[3-0].

b. The truth table for the NS2 ocutput, which is active when the next state is 4, 5, 6, or 7. This situation
occurs when the current state is one of 1, 2, 3, or 6.

0 0 0 0 0 0 0 0 0 1
1 ) 0 0 1 1 ) 0 0 1
1 0 1 0 1 1 0 0 0 1
1 0 0 0 1 1 0 0 1 0
X X X X X X 0 1 1 0

C. The truth table for the NS1 output, which is active when the next state is 2, 3, 6, or 7. The next state
iz one of 2. 3, 6, or 7 only if the current state is one of 1, 2. or 6.




Current state | 000000
$[3-0] (R-FOrmat)
0000 o1

D001 0110 101 1000 D010 0010 liegal
0010 WO WO 00, o0(1) | 0101) ilegal
0011 0100 0100 0100 0100 0100 liegal
0100 D000 D000 0000 D000 0000 liegal
0101 D000 D000 0000 D000 0000 liegal
0110 <011 | 0 0111 0111 | oI > iegal
o111 D000 D000 0000 D000 0000 lllegal
1000 D000 D000 0000 D000 0000 liegal
1001 D000 D000 0000 D000 0000 liegal

FIGURE €.3.8 This table contalns the lower 4 Wts of the controd word (the NS outputs).
which depend on both the state Inputs, 5[3-0], and the opcode, Op [5-0], which come-
spond to the Instrection opoode, These valuss can be determined from Figare C 3.5, The opcode

name is shown under the encoding in the heading. The 4 bits of the control word whose address is given by
the current-state bits and Op bits are shown in each entry. For example, when the state input bits are 0000,

the cutput is always 0001, independent of the other inputs; when the state is 2, the next state & don't care for
three of the inputs, 3 for 1w, and 5 kor 5W. Together with the entries in Figure £.3.7, this table specihes the

contents of the control unit BOM. For example, the word at address | 0001 1000] & obmined by finding the




Q00010 000100 101011 | Amy other
{1mp tbwu {*w: vale

The entry from the top yields
0000000000011000, while the
appropriate entry in the table
below is 0010. Thus the control
word at address 1000110001

is 00000000000110000010.

The column labeled “"Any other
value” applies only when the
Op bits do not match one of
the specified opcodes.

0000

0001 0110 1001 1000 IEIEI].EI ) 0010 III-EEHI
0010 LLELS FLELS LELLS 0011 0101 lllegal
0011 0100 0100 0100 0100 0100 lllegal
0100 0000 0000 0000 D000 0000 lllegal
0101 0000 0000 0000 0000 0000 lliegal
0110 0111 0111 0111 0111 0111 lllegal
0111 0000 0000 0000 D000 0000 lllegal
1000 0000 0000 0000 D000 0000 lllegal
1001 0000 0000 0000 D000 0000 lllegal

For example, the word
raat address

1000110001 is
obtained by finding (i)
the upper 16 bits from
the table on top, using
only the state input
bits (0001) and (ii)
concatenating the
lower 4 bits found by
using the entire

address (0001 to find

the row and 100011
to find the column).




For ALU Control & simple CPU control lines
- check slides:

32 - 35
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TYPES of PLDS:

e PAL - PAL devices have arrays of transistor cells arranged in a
"fixed-OR, programmable-AND" plane used to implement "sum-of-
products” binary logic equations

e PLA -The PLA (also FPLA) has a set of programmable AND gate
planes, which link to a set of programmable OR gate planes, which
can then be conditionally complemented to produce an output. This
layout allows for a large number of logic functions to be synthesized
in the sum of products (and sometimes product of sums) in canonical
forms.

e GAL - The GAL (Generic Array Logic) was an improvement on the
PAL because one device was able to take the place of many PAL
devices or could even have functionality not covered by the original
range. Its primary benefit, however, was that it was erasable and re-
programmable making prototyping and design changes easier for
engineers.

e A similar device called a PEEL (programmable electrically erasable
logic) was introduced by the International CMOS Technology (ICT)
corporation.




- FPGA - FPGAs contain programmable logic components called
"logic blocks", and a hierarchy of reconfigurable interconnects that
allow the blocks to be "wired together"™ - somewhat like a one-chip
programmable breadboard.

The most common FPGA architecture consists of an array of
configurable logic blocks (CLBs), I/0 pads, and routing channels.
Generally, all the routing channels have the same width (humber
of wires). Multiple I/0 pads may fit into the array — programmable
using HDL.

e CPLD - between PALs and FPGAs. Has ROM and hence non-
volatile. Handles complex logics with feedback and arithmetic
operations.

« ROM -

« PLC - Automation of machinery control — a small embedded system

« PLL ??




Various optimizers and sequencers are used for efficient design.
Difficult to design when complex operations/instructions are
necessary -

Floating point, superscalar, pipelining etc.

Correcting errors and debugging is difficult

How do you implement W(MFC) in this state machine ??

Minor modifications of the ISA requires lot of changes and redo
the design.

Complex instructions may require to go through several states
and signals to be generated

Many opcodes - the design may require a RISE lab./hall for
generating the truth table.
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Microprogramming
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Address

Microinstruction

Pcaﬂh mn‘im Rﬂa’dl Sﬁlﬂﬂt‘i, Add! z‘iﬂ-

zﬂ“ti Pcim Yim WC
M:DHout; [B-l'n
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.  generator
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The L/PC is incremented every time a new micro-

instruction is fetched from the micro-program (Control
Store) memory, except in the following situations:

1. When a new instruction is loaded into the IR, the

UPC is loaded with the starting address of the micro-
routine for that instruction.

2. When a Branch microinstruction is encountered

and the branch condition is satisfied, the (/PC is loaded
with the branch address.

3. When an End microinstruction is encountered, the

UPC is loaded with the address of the first CW in the

microroutine for the instruction fetch cycle (this address
is 0).




Drawbacks of this simple micro-instrcn. system:

- assigning individual bits to each control signal results in
long microinstructions because the number of required
signals is usually large.

- only a few bits are set to 1 (for active gating) in any
given microinstruction, which means the available bit

space is poorly used.

Assume:
In total, 42 control signals are needed.
e.g.
- Read, Write, Select, WMFC, End;
- Add, Subtract, AND, and XOR;
- Separate signals to R;'s ; PC, IR, MAR, MDR etc.




42 bits would be needed in each microinstruction.
Fortunately, the length of the microinstructions can be
reduced easily. Most signals are not needed simultaneously,
and many signals are mutually exclusive.

For example, only one function of the ALU can be
activated at a time. The source for a data transfer must be
unique because it is not possible to gate the contents
of two different registers onto the bus at the same time.
Read and Write signals to the memory cannot be active
simultaneously.

This suggests that signals can be grouped so that all
mutually exclusive signals are placed in the same group.
Thus, at most one microoperation per group is specified in
any microinstruction




For example, four bits suffice to represent the 16
available functions in the ALU.

Register output control signals can be placed in a
group consisting of PC,,, MDR,,, Z,,, Offset,,, RO,,.,
R1, . R2,, R3,, and TEMP,,, .

Thus, do this natural grouping (of mutually exclusive

signals) and then -
Select anyone by a 4-bit code.

Most fields must include one inactive code for the case
in which no action is required.

Grouping control signals into fields requires a little
more hardware because decoding circuits must be used to
decode the bit patterns of each field into individual control
signals.

The cost of this additional hardware is more than offset
by the reduced number of bits in each microinstruction,
which results in a smaller CONTROL store.




Microinstruction

EEEIENENERENERE

Fl (4 bits) F2 (3 bits) F3 (3 bits) F4 (4 bits) F5 (2 bits) F6 (1 bit) F7 (1 bit) F3 (1 bit)
0000: No transfer  000: No transfer 000: No transfer  0000: Add 00: Noaction  0: SelectY (: No action 0: Continue
0001: PC,,, 001: BC,, 001: MAR;, 0001; Sub 01: Read L: Selectd 1: WMFC 1: End
0010: MDR,,,  O0I0:IR, 010: MDR,, . 10: Write

0011:Z,, 011: Z;, 011: TEMP,

0100: RO, 100: RO, 100: Y;, 1111: XOR

010: R, 101:R1;, v

0ll:R2,,  110:R2, b

0111: R3,, 111:R3;,

1010: TEMP,,

1011: Ofset

Only 20 bits are

needed to store the patterns for the 42 signals




Microinstruction

Fl R M [ F4 FS I

F1 (4 bits) F2(3bis)  F3(bis)  F4(dbit)  F5(2bit)

0000: No transfer  000: No transfer 000 No transfer  0000: Add 00: No action

0001: PC,,, 001: PC;, 001: MAR;, 0001; Sub 01: Read

0010: MDR,,  OI:IR,  010:MDR,, : 10: Weie

0011: Zyy, 011 Z,, 011: TEMP,,

0100: RO, 100: RO;, 100:Y,, 1111: XOR HORIZONTAL

0101: R1,,, 101:R1,, v ORGANIZATION

0lI0:R2,,  1IG:RZ, Ly

OIL:R3,, 1IR3, T o]

1010: TEMP,,, o

1011: Offset, 198 g ‘
L | joititftiolo]
2 1{0°0[0{0:0]
3 0:0:0[0{1]1;
4 0:0:1(1{0100
5 0.0 0{000/0]
6 0:0;0{0]1;0
7 0:0:0{00;0

VERTICAL ORGANIZATION is

also possible, where compact

codes are generated using
highly encoded schemes.

Rl,,,

R1;,

R3,,.;

= O O O

_— 0 O O O

_

[ R s |

e - R e N = A e B

L= = = . = R -

< I WMFC

Lo == R == . == Y = = I =

o b o S N

= O

_— 0 9




MICROPROGRAM SEQUENCING

Having a separate microroutine for each machine
instruction results in a large total number of microinstructions
and a large control store.

If most machine instructions involve several addressing
modes, there can be many instruction and addressing mode
combinations. A separate microroutine for each of these
combinations would produce considerable duplication of
common parts.

Its better to organize the microprogram so that the
microroutines share as many common parts as possible. This
requires many branch microinstructions to transfer control
among the various parts.

e.g. Consider an instruction of the type:

Add Rsrcl Rdst
Addressing modes:
register, autoincrement, autodecrement, and indexed, as
well as the indirect forms of these four modes.




DOU

I MAR « [PC]; Read; Z « [PC) + 4

| o
EY{—[E];WMFC

Autoincrement

Address indicated by
an OCTAL number;

Note minor change in
notation of micro-

proaram instructions
Register indirect

161

L
141 I 121

MAR « [PC]; Read Zi—[Rsm] ;
Z[PCl+4
122

MAR ¢ [Rsrc); Read
Z « [Rsrc] + 4

PC « [Z], WMFC MAR,RSIM—[Z] Read Rsre  [Z]

163

Y « [MDR]
164

Z « [Y] + [Rsrc] lemh[ 170, 0

165
MAR « [Z]; Read

166

Branch({ 170, OR }; WMFC

217N

123
l 170

MAR ¢ [MDR]; Read; WMFC

111

Branch{171}; WMEFC

102 Rl:glﬂl:l‘dil'ﬂc‘[ 101

[ Bancn172) -—I_'n-[nsml _I

D




000
I MAR « [PC]; Read:; Z « [PC] + 4
001 -
I PC.'\"c—[lZ];WMFC I

002
I IR fMDR] I

—

I Branch(InstDec, OR} I

Microroutines for other instructions

Indexed Autodecrement Autoincrerment Register indirect
1 161 I 141 I 121 T _l 111
MAR « [PC]; Read Ze [Rsrc)—4 | | MAR « (Rscc): Read I | MAR « [Rsrc]; Read
Z+—[PCl+4 Z «— [Rsrc] + 4 i
l 162 142 1 122 4 112
I PC « [Z); WMFC I IMAR.Rsmc—[‘Z.];Rt.adl I Rsrc «— [Z] I l Branch{171}; WMFC
163 123
I Y « [MDR] | |Bm¢h: 170. OR }: WMFCI
164 | 143 |
I Z « [Y] + [Rsrc] I IBrmch{ 170, OR}; WMH:I
165
I MAR « [Z]: Read I
L 166
Ianch{]'}'ﬂ,ﬂR};WMFCI T 4 =
YA S
170 S =

' lMAR(—!MDR]: Read; WMFC' L=~/

171
I Y «— [MDR] I 102 Register direct 101

t 4 Banchi2y b Yemea ]

172
I Z «— [Y] + [Rdst] I o

173
1 Bdst < 71 1 End




Branch Address Modification using Bit-ORing

Consider the point labeled "« " in the figure. At this

point, it is necessary to choose between actions required by
direct and indirect addressing modes.

If the indirect mode is specified in the instruction, then
the microinstruction in location 170 is performed to fetch the
operand from the memory.

If the direct mode is specified, this fetch must be
bypassed by branching immediately to location 171.

The most efficient way to bypass microinstruction 170
is to have the preceding branch microinstructions specify the
address 170 and then use an OR gate to change the least
significant bit of this address to 1 if the direct addressing
mode is involved.

This is known as the bit-ORing technique for modifying
branch addresses.




X  Wide BRANCH ADDRESSING
Branch{InstDec, OR

» » Microroutines for other instructions
Autodecrement Autoincrement Register indirect

_i_,,_T_,,_I_m,I,_.L__‘

The instruction decoder {InstDec}, generates the
starting address of the microroutine that implements the
instruction that has just been loaded into the IR.

In our example, register IR contains the Add instruction,

for which the instruction decoder generates the micro-
instruction address 1 n1 which cannot be loaded as is into the

microprogram counter (/PC).

The bit-ORing technique can be used at this point to
modify the starting address generated by the instruction
decoder to reach the appropriate path.

Bit-Oring should change the address 101 to one of the
five possible address values, 161, 141, 121, 101, or 111,
depending on the addressing mode used in the instruction




Execute the instruction -
Add (Rsrc)+, Rdst

F,? —
e e Contents of IR OP code
Address Microinstructio:

(octal)

bR BRI BRI A LS IS § 4 I R S M AL 34 S EESAERILEI B BAE 153 SEd Sl S MEN ESIEEIE B

000 Pcm,m Read, Selectd, Add, Z;,

001 Zour PCins Yo WMEC

002 MDR,,;, IR;,

003 uBranch {pPC « 101 (from Instruction decoder);
WPCs 4 & [IRyg0]; WPC; « [IRg] - [IRg] - [IRg]}

121 Rsrc,,, MAR,,, Read, Select4, Add, Z,,

122 Zou RSIC,,

123 uBranch {UPC & 170; uPC, « [IRg]}, WMFC

170 MDR, . MAR, , Read, WMFC

171 MDR,,,, Y;,

172 Rdst,, SelectY, Add, Z,,

173 Z,., Rdst. , End

Microinstruction for Add [Rsrc)+,Rdst.

11 10 87 473 0

The instruction has a 3-bi
field to specify the
addressing mode for the
source operand, as above.

Bit patterns:

11, 10, 01, and 00, located
in bits 10 and 9, denote the
indexed, autodecrement,
autoincrement,
and register modes,
respectively.

For each of these modes
bit 8 is used to specify the
indirect version.




Address Microinstructio!

(octal)

o Contents of IR Rsn:
000 PC,.» MAR; |

001 zﬁ:;cm, Y;,, WMFC ! m

002 MD _ Add (Rsrc)+, Rdst;

003 ‘fﬁk 101 (from Instruction decodery~. LR .o fOr Auto-increment
54 & [IRygg]; WPCs ¢ [IRg] - [IRg] - [IR mode: 01; _

121 RSI¢,,» MAR,,, Read, Selectd, Add, Z;, IRg = 0 (no Indirect);

122 Zopun RSICy

123 < uBranch {UPC ¢ 170; uPCy ¢ [IRg]}, WMFC_> Thus,

170 MDR,., MAR,, Read, WMFC HUPCs 3 = (010), = (2)g;

171 MDR,,, Y,,

172 Rdst,,, SelectY, Add, Z,, Modified UPC for

173 Z,» Rdst;,, End branching after (003)g =

(121)g;

Microinstruction for Add (Rsrc)+,Rdst.

Modified UPC for branching
after (123)s = (171)g; //Direct mode




