
Functions of Control Unit

 Sequencing
!Causing the CPU to step through a series of micro-

ioperations

 Execution
!Causing the performance of each micro-op

 Use of Control Signals to accomplish the taskg p

Types of Control Signalsyp g

• Clock
o One micro-instruction (or set of parallel micro-o One micro-instruction (or set of parallel micro-

instructions) per clock cycle
• Instruction register
! Op-code for current instruction
! D i hi h i i i f d! Determines which micro-instructions are performed

• Flags• Flags
! State of CPU
! Results of previous operations! Results of previous operations

• From control bus
! Interrupts
! Acknowledgements

Model of Control UnitModel of Control Unit

HARDWIRED CONTROL

The required control signals are determined by the
following information:following information:

• Contents of the control Step Counter

• Contents of the IR

• Contents of the condition code flags

• External I/P signals, MFC, IRQ etc.g Q

Control Unit with Decoded InputsControl Unit with Decoded Inputs

CLK Control Step Counter
RESET

STEP Decoder

T T T

External

T1 T2
Tn

INS1

ENCODER
Instruction

Decoder
IR

Inputs

INS2

ENCODERDecoder

Condition

CodesCodes

INSm

RUN ENDRUN

CONTROL

SIGNALS

For an “ADD” instruction (ISA): For a “Branch” instruction (ISA):For an ADD instruction (ISA):

1. PCout, MARin, READ, SEL #4, ADD, Zin

2.

()

1. PCout, ………, Zin

2.

3.

4.

5.

3.

4. Offset (IRout), ADD, Zin

5. Zout, PCin, END

6. MDRout, SEL Y, ADD, Zin

.......
461

 ! BRTADDTTZ
in

END = T7.ADD + T5.BR + (T5.CF + T4.CF’).BRN +….

When RUN = 0, the counter STOPS; required from W_MFC;

Design logic mostly based on FSM (Finite State machine)

.......
461

 ! BRTADDTTZ
in

END = T7.ADD + T5.BR + (T5.CF + T4.CF’).BRN +….

FSM – based Hardware Control Unit design

Moore type machine necessary - output signal depends on the

current state.

Next state depends on the input and current state.

E h f l i lEach state generates a set of control signals.

To implement any ISA, the system sequentially changes state from
 t th C t l U it i l t th tone to another. Control Unit implements the steps.

For a sequence of “N” steps, there are S0 to SN-1 stages.

At each stage Si: a set of outputs Oi,0….Oi,M-1 are generated,g i p i,0 i,M 1 g

depending on the Si.

Categories of control signals: functions for ALU, select of storage
units, select of data routes (based on design).

S

0

Typical Moore State GraphS0

0 1
0

S1 S2

0

1

1

1

S3

11

Moore state table
0

0

AB

A+ B+ Z (Present

output)X=0 X=1

Moore state table

X 0 X 1

S0 0 0 S0 0 0 1 1 S2 0

S1 0 1 S0 0 0 1 1 S2 1

S2 1 1 S2 1 1 1 0 S3 1

S3 1 0 S3 1 0 0 1 S1 0

Moore network example

Combinati

onal
D1 F/F

Clk
Q1

X1

X2

Q1
+

Z1

Sub N/W

for F/F

inputs
D2 F/F

Clk
Q2

Xm
Q2

+
Combinati

-onal
Z2

inputs

Q1

Q

Clk

Sub N/W

for

Outputs
ZQ2

Qk

Dk F/F

Clk
Qk

Qk
+

Outputs
Zn

Qk Clk

Clk

The outputs of the combinational logic are the next-
state number and the control signals to be asserted for the
current state.

The inputs to the combinational logic are the current p g
state and any inputs used to determine the next state. In
this case, the inputs are the instruction register opcode
bits bits.

Notice that in the FSM for Hardwired Control, the
outputs depend only on the current state not on the outputs depend only on the current state, not on the
inputs.

Id tif i h t i ti f M hi i th t Identifying characteristic for a Moore machine is that
the output depends only on the current state.

For a Moore machine, the box labeled combinational
control logic can be split into two pieces. One piece has the
control output and only the state input, while the other has p y p ,
only the next-state output.

START

INSTRCN
DECODE

REG.

FETCH
DECODE

FETCH

MEM. ACCESS
INSTRCN

R-Type
INSTRCN.

BRANCH
INSTRCN

JUMP
INSTRCN

OVERALL state machine diagram for CPU

INSTRCN INSTRCN.
START INSTRCN.

FETCH

INSTRCN.
DECODE/
Register
FETCH

START

MMEORY
ADDRESS
COMPN.

EXECUTION BRANCH JUMP

MEMORY
ACCESS

R-TYPE
COMPN.

ACCESS

WRITE
BACKBACK

FSM Graph

Moore type machine - output signal depends on the

current state.

Next state depends on the input and current state.

Break the
control function
into two parts: into two parts:

- the next-state
outputs, which p ,
depend on all the
inputs,

and

- the control - the control
signal outputs,
which depend
o l o the only on the
current-state bits

Let’s look at

a ROM-based
i l t tiimplementation,
first.

e.g.: PCWrite is high in states 0 and 9; this corresponds to

addresses with the 4 low-order bits being either 0000 or g
1001. The bit will be high in the memory word independent of
the inputs Op[5–0], so the addresses with the
bit high are 000000000, 0000001001, 0000010000, bit high are 000000000, 0000001001, 0000010000,
0000011001, . . . , 1111110000, 1111111001.

The general form of this is XXXXXX0000 or XXXXXX1001.

The truth table for

next-state output bit
(NS[0])(NS[0]).

The next-state
outputs depend on the outputs depend on the
value of Op[5–0],
which is the opcode
field and the current field, and the current
state, given by S[3–0].

Th f t th The four truth
tables for the

four next-state
 bi output bits

(NS[3–0]).

The next-state
outputs depend
on the value of
Op[5–0], which
is the opcode
field, and the
current state,
given by S[3–0].

The entry from the top yields
0000000000011000, while the
appropriate entry in the table
b l i 0010 Th th t l below is 0010. Thus the control

word at address 1000110001
is 00000000000110000010.

The column labeled “Any other
value” applies only when the
Op bits do not match one of
the specified opcodes

For example, the word
at address

1000110001 i

the specified opcodes.

1000110001 is

obtained by finding (i)
the upper 16 bits from
the table on top usingthe table on top, using
only the state input

bits (0001) and (ii)

concatenating the concatenating the
lower 4 bits found by
using the entire

address (0001 to findaddress (0001 to find

the row and 100011
to find the column).

For ALU Control & simple CPU control lines
– check slides:

32 - 35

TYPES of PLDS:

• PAL - PAL devices have arrays of transistor cells arranged in a
"fixed OR programmable AND" plane used to implement "sum of"fixed-OR, programmable-AND" plane used to implement "sum-of-
products" binary logic equations

• PLA - The PLA (also FPLA) has a set of programmable AND gate• PLA - The PLA (also FPLA) has a set of programmable AND gate
planes, which link to a set of programmable OR gate planes, which
can then be conditionally complemented to produce an output. This
layout allows for a large number of logic functions to be synthesized layout allows for a large number of logic functions to be synthesized
in the sum of products (and sometimes product of sums) in canonical
forms.

• GAL - The GAL (Generic Array Logic) was an improvement on the
PAL because one device was able to take the place of many PAL p y
devices or could even have functionality not covered by the original
range. Its primary benefit, however, was that it was erasable and re-
programmable making prototyping and design changes easier for
engineers.

• A similar device called a PEEL (programmable electrically erasable
logic) was introduced by the International CMOS Technology (ICT)
corporation.

• FPGA - FPGAs contain programmable logic components called

"logic blocks", and a hierarchy of reconfigurable interconnects that
allow the blocks to be "wired together“ - somewhat like a one-chipallow the blocks to be wired together somewhat like a one chip
programmable breadboard.

The most common FPGA architecture consists of an array of The most common FPGA architecture consists of an array of
configurable logic blocks (CLBs), I/O pads, and routing channels.
Generally, all the routing channels have the same width (number
of wires). Multiple I/O pads may fit into the array – programmable) p / p y y p g
using HDL.

• CPLD – between PALs and FPGAs. Has ROM and hence non-
volatile. Handles complex logics with feedback and arithmetic
operations.

• ROM –

• PLC - Automation of machinery control – a small embedded system

• PLL ??

Various optimizers and sequencers are used for efficient design.

Difficult to design when complex operations/instructions are
necessary –
Floating point superscalar pipelining etcFloating point, superscalar, pipelining etc.

Correcting errors and debugging is difficultCorrecting errors and debugging is difficult

How do you implement W(MFC) in this state machine ??

Minor modifications of the ISA requires lot of changes and redo
the design.g

Complex instructions may require to go through several states
and signals to be generated

M d h d i i RISE l b /h ll f Many opcodes – the design may require a RISE lab./hall for
generating the truth table.

Microprogramming

! Micro-Instructions for: ADD (R3), R1

The PC is incremented every time a new micro-

instruction is fetched from the micro-program (Control instruction is fetched from the micro-program (Control
Store) memory, except in the following situations:

1 When a ne inst ction is loaded into the IR the 1. When a new instruction is loaded into the IR, the

 PC is loaded with the starting address of the micro-

routine for that instruction.routine for that instruction.

2. When a Branch microinstruction is encountered

d th b h diti i ti fi d th PC i l d d and the branch condition is satisfied, the PC is loaded

with the branch address.

3. When an End microinstruction is encountered, the

 PC is loaded with the address of the first CW in the

microroutine for the instruction fetch cycle (this address microroutine for the instruction fetch cycle (this address
is 0).

Drawbacks of this simple micro-instrcn. system:

- assigning individual bits to each control signal results in
long microinstructions because the number of required
signals is usually largesignals is usually large.

- only a few bits are set to 1 (for active gating) in any
given microinstruction which means the available bit given microinstruction, which means the available bit
space is poorly used.

Assume:
In total, 42 control signals are needed.

e.g.
- Read, Write, Select, WMFC, End;
- Add, Subtract, AND, and XOR;, , , ;
- Separate signals to Ri’s ; PC, IR, MAR, MDR etc.

42 bits would be needed in each microinstruction.
Fortunately the length of the microinstructions can be Fortunately, the length of the microinstructions can be
reduced easily. Most signals are not needed simultaneously,
and many signals are mutually exclusive.

For example, only one function of the ALU can be
activated at a time. The source for a data transfer must be
unique because it is not possible to gate the contents
of two different registers onto the bus at the same time.
Read and Write signals to the memory cannot be active g y
simultaneously.

This suggests that signals can be grouped so that all This suggests that signals can be grouped so that all
mutually exclusive signals are placed in the same group.
Thus, at most one microoperation per group is specified in
any microinstructionany microinstruction

For example, four bits suffice to represent the 16
available functions in the ALU.

Register output control signals can be placed in a
group consisting of PCout, MDRout, Zout, Offsetout, R0out,group consisting of PCout, MDRout, Zout, Offsetout, R0out,
R1out, R2out, R3out and TEMPout .

Thus do this natural grouping (of mutually exclusive Thus, do this natural grouping (of mutually exclusive
signals) and then -

Select anyone by a 4-bit code.

Most fields must include one inactive code for the case
in which no action is required.

Grouping control signals into fields requires a little
more hardware because decoding circuits must be used to
d d th bit tt f h fi ld i t i di id l t l decode the bit patterns of each field into individual control
signals.

The cost of this additional hardware is more than offset
by the reduced number of bits in each microinstruction,
which results in a smaller CONTROL store.

Only 20 bits are needed to store the patterns for the 42 signals

VERTICAL ORGANIZATION is
also possible, where compact
codes are generated using
highly encoded schemes.

HORIZONTALHORIZONTAL
ORGANIZATION

MICROPROGRAM SEQUENCING

Having a separate microroutine for each machine Having a separate microroutine for each machine
instruction results in a large total number of microinstructions
and a large control store.

If most machine instructions involve several addressing
modes, there can be many instruction and addressing mode
combinations A separate microroutine for each of these combinations. A separate microroutine for each of these
combinations would produce considerable duplication of
common parts.

Its better to organize the microprogram so that the
microroutines share as many common parts as possible. This
requires many branch microinstructions to transfer control
among the various parts.

e g Consider an instruction of the type:e.g. Consider an instruction of the type:

Add Rsrc, Rdst

Addressing modes: Addressing modes:
register, autoincrement, autodecrement, and indexed, as
well as the indirect forms of these four modes.

Address indicated by
an OCTAL number;

Note minor change in
notation of micro-
program instructions

Branch Address Modification using Bit-ORing

C id h i l b l d “ ” i h fi hiConsider the point labeled “! ” in the figure. At this

point, it is necessary to choose between actions required by
direct and indirect addressing modes. g

If the indirect mode is specified in the instruction, then
the microinstruction in location 170 is performed to fetch the the microinstruction in location 170 is performed to fetch the
operand from the memory.

If the direct mode is specified this fetch must be If the direct mode is specified, this fetch must be
bypassed by branching immediately to location 171.

The most efficient way to bypass microinstruction 170 The most efficient way to bypass microinstruction 170
is to have the preceding branch microinstructions specify the
address 170 and then use an OR gate to change the least
i ifi bi f hi dd if h di dd isignificant bit of this address to 1 if the direct addressing

mode is involved.

This is known as the bit-ORing technique for modifying
branch addresses.

Wide BRANCH ADDRESSING

The instruction decoder {lnstDec} generates the The instruction decoder {lnstDec}, generates the
starting address of the microroutine that implements the
instruction that has just been loaded into the IR.

In our example, register IR contains the Add instruction,
for which the instruction decoder generates the micro-
instruction address 101, which cannot be loaded as is into the instruction address 101, which cannot be loaded as is into the

microprogram counter (PC).

The bit-ORing technique can be used at this point to g q p
modify the starting address generated by the instruction
decoder to reach the appropriate path.

Bit-Oring should change the address 101 to one of the
five possible address values, 161, 141, 121, 101, or 111,
depending on the addressing mode used in the instruction

Execute the instruction -
Add (Rsrc)+, Rdst

The instruction has a 3-bit
field to specify the
add essing mode fo the addressing mode for the
source operand, as above.

Bit patterns:Bit patterns:
11, 10, 01, and 00, located
in bits 10 and 9, denote the
indexed autodecrement indexed, autodecrement,
autoincrement,
and register modes,

ti l respectively.

For each of these modes,
bit 8 is used to specify the bit 8 is used to specify the
indirect version.

Add (R)+ Rd tAdd (Rsrc)+, Rdst;

IR10-9 for Auto-increment
mode: 01;;

IR8 = 0 (no Indirect);

Thus,Thus,

 PC5-3 = (010)2 = (2)8 ;

Modified PC for

branching after (003)8 =
(121)8 ;(121)8 ;

Modified PC for branching

after (123)8 = (171)8 ; //Direct mode

