
page 109/16/15 CSE 30341: Operating Systems Principles

 Process Synchronization

 Concurrent access to shared data may result in
data inconsistency
 Multiple threads in a single process

 Maintaining data consistency requires mechanisms
to ensure the orderly execution of cooperating
processes

page 209/16/15 CSE 30341: Operating Systems Principles

Background

 Suppose that we wanted to provide a solution to
the consumer-producer problem that fills all the
buffers. We can do so by having an integer count
that keeps track of the number of full buffers.
Initially, count is set to 0. It is incremented by the
producer after it produces a new buffer and is
decremented by the consumer after it consumes a
buffer.

page 309/16/15 CSE 30341: Operating Systems Principles

Producer/Consumer

Producer: while (true) {
 /* produce an item and put in nextProduced */

while (count == BUFFER_SIZE)
; // do nothing
buffer [in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;
count++;
 }

Consumer:while (1) {
while (count == 0)
; // do nothing
nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
count--;
/* consume the item in nextConsumed */

 }

page 409/16/15 CSE 30341: Operating Systems Principles

Race Condition

 count++ could be implemented as
 register1 = count
 register1 = register1 + 1
 count = register1

 count-- could be implemented as
 register2 = count
 register2 = register2 - 1
 count = register2

 Consider this execution interleaving with “count = 5” initially:
T0: producer execute register1 = count {register1 = 5}
T1: producer execute register1 = register1 + 1 {register1 = 6}
T2: consumer execute register2 = count {register2 = 5}
T3: consumer execute register2 = register2 - 1 {register2 = 4}
T4: producer execute count = register1 {count = 6 }
T5: consumer execute count = register2 {count = 4}

After concurrent execution, count can be 4, 5 or 6

page 509/16/15 CSE 30341: Operating Systems Principles

Critical section

 Segment of code where threads are updating
common variables is called a critical section

 Solution is to force only one thread inside the
critical section at any one time

 Define a section before critical section, called entry
section and a section at the end called end section.
We can implement mechanisms in the entry
section that ensures that only one thread is inside
the critical section. End section can then tell
someone in entry section to continue.

page 609/16/15 CSE 30341: Operating Systems Principles

Solution to Critical-Section Problem

 Solution must satisfy three requirements:
1. Mutual Exclusion - If process Pi is executing in its critical

section, then no other processes can be executing in
their critical sections

2. Progress - If no process is executing in its critical section
and there exist some processes that wish to enter their
critical section, then only those processes that are not
executing in their remainder section can participate in the
decision on which will enter its critical section next and
this selection cannot be postponed indefinitely

3. Bounded Waiting - A bound must exist on the number of
times that other processes are allowed to enter their
critical sections after a process has made a request to
enter its critical section and before that request is granted

 Assume that each process executes at a nonzero speed
 No assumption concerning relative speed of the N

processes

page 709/16/15 CSE 30341: Operating Systems Principles

Classic s/w soln: Peterson’s Solution

 Restricted to two processes
 Assume that the LOAD and STORE instructions

are atomic; that is, cannot be interrupted (not true
for modern processors)

 The two threads share two variables:
 int turn;
 Boolean flag[2]

 The variable turn indicates whose turn it is to enter
the critical section.

 The flag array is used to indicate if a process is
ready to enter the critical section. flag[i] = true
implies that process Pi is ready!

page 809/16/15 CSE 30341: Operating Systems Principles

Algorithm for Process Pi

do {
 flag[i] = TRUE;
 turn = j;
 while (flag[j] && turn == j);
 CRITICAL SECTION
 flag[i] = FALSE;
 REMAINDER SECTION
 } while (TRUE);

1) Mutual exclusion because only way thread enter critical
section when flag[j] == FALSE or turn == TRUE

2) Only way to enter section is by flipping flag[] inside loop
3) turn = j allows the other thread to make progress

page 909/16/15 CSE 30341: Operating Systems Principles

Synchronization Hardware

 Many systems provide hardware support for critical
section code

 Uniprocessors – could disable interrupts
 Currently running code would execute without

preemption
 Generally too inefficient on multiprocessor systems

 Have to wait for disable to propagate to all processors
 Operating systems using this not broadly scalable

 Modern machines provide special atomic hardware
instructions

 Atomic = non-interruptable

 Either test memory word and set value
 Or swap contents of two memory words

page 1009/16/15 CSE 30341: Operating Systems Principles

Solution using TestAndSet

 Definition of TestAndSet:
 boolean TestAndSet (boolean *target) {
 boolean rv = *target;
 *target = TRUE;
 return rv:
 }
 Shared boolean variable lock., initialized to false.
 Solution:
 do {
 while (TestAndSet (&lock))
 ; /* do nothing
 // critical section
 lock = FALSE;
 // remainder section
 } while (TRUE);

page 1109/16/15 CSE 30341: Operating Systems Principles

Solution using Swap
 Definition of Swap:
 void Swap (boolean *a, boolean *b) {
 boolean temp = *a;
 *a = *b;
 *b = temp:
 }
 Shared Boolean variable lock initialized to FALSE; Each

process has a local Boolean variable key.
 Solution:
 do {
 key = TRUE;
 while (key == TRUE)
 Swap (&lock, &key);
 // critical section
 lock = FALSE;
 // remainder section
 } while (TRUE);

page 1209/16/15 CSE 30341: Operating Systems Principles

Solution with Test And Set and bounded
wait
 boolean waiting[n]; boolean lock; initialized to false
Pi can enter critical section iff waiting[i] == false or key == false
do {

waiting[i] = TRUE;
key = TRUE;
while (waiting[i] && key)

key = TestAndSet (&lock);

waiting[i] = FALSE;
// critical section
j = (i + 1) % n;
while ((j != i) && !waiting[j])

j = (j + 1) % n;

if (j == i)
lock = FALSE;

else
waiting[j] = FALSE;

// remainder section

} while (TRUE);

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

