
Lecture 4 - Threads

Instructor : Bibhas Ghoshal (bibhas.ghoshal@iiita.ac.in)

Autumn Semester, 2015

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 1 / 19



Lecture Outline

Thread Concept
Thread Usage
Multi-threaded Process
Thread Types
Threading Issues
Signal Handling
Windows/Linux Threads

References and Illustrations have been used from:
lecture slides of the book - Operating System Concepts by
Silberschatz, Galvin and Gagne, 2005
Modern Operating System by Andrew S. Tanenbaum
lecture slides of CSE 30341: Operating Systems (Instructor :
Surendar Chandra),

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 2 / 19



Thread Concept

Use of concurrency within an application incurs high process
switching overhead
Process switching overhead has two components:

Execution related overhead : While switching between process,
the CPU state of the running process has to be saved and state of
the new process has to be loaded (unavoidable)
Resource related overhead : Process environment contains
information related to resources allocated to a process and its
interaction with other processes. It leads to large size of process
state information, which adds to process swtching information.
(avoidable)

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 3 / 19



Thread Concept

Switching overhead can be reduced by eliminating resource related
overhead in some situations.
Example: Occurence of event may result in switching of execution of
process P1 to execution of P2. If both P1 and P2 belong to the same
application, they share the same data, code and resources; their state
information differs only in values contained in CPU, registers and stack
(much of it is redundant). This feature is exploited in notion of Thread.

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 4 / 19



Thread Usage : Need for Threads

Simpler programming model
Decompose applications into multiple sequential threads that run in
quasi-parallely
Ability for parallel entities to share an address space and all of its
data among themselves

Since lightweight, threads are easier to create and destroy
Threads speed up application involving substantial computing and
I/O by overlapping operations

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 5 / 19



Thread Usage Example

Example1 :
User uses word processor for writing a document. Deletes a line from
page 1 and then wants to change a phrase in line 1 of page 600. The
word processor has to re-format the book upto line 600 beacuse it
doesn’t know what will be line 1 until it has processed all other pages.
Threads help here. If the word-processor is written as a three threaded
program :

Interactive thread - listens to the keyboard and mouse to accept
commands
computing madly in background
saving document automatically

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 6 / 19



Thread Concept

Thread : A program execution that uses resources of the process

A thread has its own stack and CPU state
Thread of same process share code,data and resources with one
another
Kernel allocates stack and Thread Control Block to each thread
OS saves only CPU state and stack while switching between
threads

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 7 / 19



Thread States

Threads and Process are analogous barring no allocation of resources
to threads. Thus, process and thread states are anologous

When a thread is created, it is put in ready state as its parent
process already has the resources allocated to it.
It enters running state when scheduled
It does not enter blocked state since it does not request resource;
however it can enter bloked state due to process synchronization
requirement

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 8 / 19



Single and Multithreaded Processes

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 9 / 19



Advantages of threads

Low overhead - contains only state of computation
Responsiveness - Interactive applications can be performing two
tasks at the same time (rendering, spell checking)
Resource Sharing - Sharing resources between threads is easy
(too easy?)
Economy - Resource allocation between threads is fast (no
protection issues)
Speed-up - concurrency is realized by creating many threads
within a process
Efficient communication - threads of a processs communicate
through shared data space, avoiding system calls for
communication
Utilization of MP Architectures - seamlessly assign multiple
threads to multiple processors (if available). Future appears to be
multi-core anyway

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 10 / 19



Thread types

User threads: thread management done by user-level threads
library. Kernel does not know about these threads

Three primary thread libraries:
POSIX Pthreads
Win32 threads
Java threads

Kernel threads: Supported by the Kernel and so more overhead
than user threads

Examples: Windows XP/2000, Solaris, Linux, Mac OS X

User threads map into kernel threads

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 11 / 19



Thread types

User threads: thread management done by user-level threads
library. Kernel does not know about these threads
Three primary thread libraries:

POSIX Pthreads
Win32 threads
Java threads

Kernel threads: Supported by the Kernel and so more overhead
than user threads

Examples: Windows XP/2000, Solaris, Linux, Mac OS X

User threads map into kernel threads

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 12 / 19



Multi-threading models

Many-to-One: Many user-level threads mapped to single kernel
thread

If a thread blocks inside kernel, all the other threads cannot run
Examples: Solaris Green Threads, GNU Pthreads

One-to-One: Each user-level thread maps to kernel thread
Many-to-Many: Allows many user level threads to mapped to
many kernel level threads

Allows the operating system to create a sufficient number of kernel
threads

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 13 / 19



Two-level Model

Similar to M:M, except that it allows a user thread to be bound to
kernel thread - IRIX, HP-UX, Tru64 UNIX, Solaris 8 and earlier

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 14 / 19



Threading Issues

Properly functioning OS ensures that protection between
processes are not breached. OS makes no such promise for
threads within a single process.

Two processes cannot share memory unless explicitly allowed. Two
threads can trample on the local memory. Sometimes (not always)
you get segmentation violation. Regardless, you cannot rely on the
OS giving you segmentation fault all the time.

Semantics of fork() and exec() system calls

Does fork() duplicate only the calling thread or all threads?

Thread cancellation

Asynchronous cancellation terminates the target thread
immediately

Deferred cancellation allows the target thread to periodically check
if it should be cancelled

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 15 / 19



Signal Handling

Signals are used in UNIX systems to notify a process that a
particular event has occurred

Ctrl-C sends SIGINT (Interrupt)
float x=1/0; sends SIGFPE

A signal handler is used to process signals
Signal is generated by particular event
Signal is delivered to a process
Signal is handled

Options:

Deliver the signal to the thread to which the signal applies
Deliver the signal to every thread in the process
Deliver the signal to certain threads in the process
Assign a specific thread to receive all signals for the process

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 15 / 19



Thread Pools and Thread Specific Data

Create a number of threads in a pool where they await work
Advantages:

Usually slightly faster to service a request with an existing thread
than create a new thread
Allows the number of threads in the application(s) to be bound to
the size of the pool

Thread Specific Data :
Allows each thread to have its own copy of data
Useful when you do not have control over the thread creation
process (i.e., when using a thread pool)

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 16 / 19



Scheduler Activations

Both M:M and Two-level models require communication to
maintain the appropriate number of kernel threads allocated to the
application
Scheduler activations provide upcalls - a communication
mechanism from the kernel to the thread library
This communication allows an application to maintain the correct
number kernel threads

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 17 / 19



Windows XP Threads

Implements the one-to-one mapping
Each thread contains

A thread id
Register set
Separate user and kernel stacks
Private data storage area

The register set, stacks, and private storage area are known as
the context of the threads
The primary data structures of a thread include:

ETHREAD (executive thread block)
KTHREAD (kernel thread block)
TEB (thread environment block)

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 18 / 19



Linux Threads

Linux refers to them as tasks rather than threads
Thread creation is done through clone() system call
clone() allows a child task to share the address space of the
parent task (process)

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 19 / 19


