
Lecture 3 - Process

Instructor : Bibhas Ghoshal (bibhas.ghoshal@iiita.ac.in)

Autumn Semester, 2015

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 1 / 31

Lecture Outline

Process Concept
Process State
Process Control Block
Process Operation
Inter Process Communication :

Shared Memory
Message Passing

Producer/Consumer Problem

References and Illustrations have been used from:
lecture slides of the book - Operating System Concepts by
Silberschatz, Galvin and Gagne, 2005
Modern Operating System by Andrew S. Tanenbaum
lecture slides of CSE 30341: Operating Systems (Instructor :
Surendar Chandra),

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 2 / 31

Process Concept

Process : Program in execution; process execution must progress in
sequential fashion; a process is more than a code.
A process includes the following:

The text section (code), data section (global variables)
Program counter and contents of registers
Stack to contain function parameters and return addresses
(during recursive calls)
Heap required during dynamic memory allocations

h

Figure : Process address Space

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 3 / 31

Process Concept contd.

Exec.c

Compiler

a.out

(Secondary Memory)

(Primary Memory)

Figure : Program Execution

Exec.c will reside in secondary storage. OS will pick it up and put
it in main memory and execute.
When OS puts the program in main memory, a process is created.
The OS maintains a data structure for each process called a
Process Control Block

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 4 / 31

Process Structure

a.out (Executable Code)

Static Variables

Global Variables

(once created will be
there for lifetime
of the process)

Heap

Stack
(for recursion calls)

(for dynamic allocation)

Figure : Process created during execution of a.out

While executing the program, one is restricted within the process
boundary, else Segmentation Fault

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 5 / 31

Process Attributes

Process ID : unique number assigned to each process
Program Counter
Process State
Priority
General Purpose Registers
List of open files
List of open devices
Protection

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 6 / 31

Process Control Block

Information associated with each process and maintained by the
operating system

Process State
Program counter
CPU registers
CPU scheduling information
Memory-management information
Accounting information
I/O status information

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 7 / 31

Process Control Block

Figure : PCB

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 8 / 31

Process State

As a process executes, it changes state
new: The process is being created (process is in secondary
memory)
ready: process is waiting to be assigned to a processor (process
in main memory)
running: Instructions are being executed (process in main
memory)
waiting: The process is waiting for some event to occur (process
in main memory)
terminated: The process has finished execution (the PCB and all
traces of process is deleted)
suspend ready : processes which were in ready state, but due to
lack of resources are backed up in secondary memory
suspend block : suspend processes which are in blocked/waiting
stste and send them to secondary memory

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 9 / 31

Process State Diagram

h

Figure : Process States

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 10 / 31

CPU switch from P0 to P1 : Context switching

Save all state of P0, restore all state of P1, save

Figure : PCB

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 11 / 31

Ready Queue and other Device Request

Figure : PCB

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 12 / 31

Scheduler

Long-term scheduler (or job scheduler) – selects which processes
should be brought into the ready queue

invoked very infrequently (seconds, minutes) - (may be slow)
should have mix of CPU bound process and I/O bound process

Short-term scheduler (or CPU scheduler) – selects which process
should be executed next and allocates CPU

invoked very frequently (milliseconds) - (must be fast)
apart from decision making, everything else is done by dispatcher
dispatcher schedules process with minimum context length

Medium-term scheduler moves some processes to disk and
vice-versa - swapping
Processes can be described as either:

I/O-bound process – spends more time doing I/O than
computations, many short CPU bursts
CPU-bound process – spends more time doing computations; few
very long CPU bursts

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 13 / 31

Numerical example

Consider a system with N processors and M processes, then
the number of processes that will be there in each of the following
states are:

State minimum maximum
Ready 0 M

Running 0 N
Block 0 M

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 14 / 31

Operations on Process

Process creation
Parent creates new process forming a tree
Child process can run concurrently with parent or not
Child can share all resources, some or none at all

Process Scheduling
Process Execution
Process termination

Exit for normal termination
Output data from child to parent (via wait)
exit() and exit() functions

Abort for abnormal kernel initiated termination
Some OS require the presence of parent to allow child

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 15 / 31

Process Creation

Parent process create children processes, which, in turn create
other processes, forming a tree of processes
Generally, process identified and managed via a process identifier
(pid)
Resource sharing options

Parent and children share all resources
Children share subset of parent’s resources
Parent and child share no resources

Execution options
Parent and children execute concurrently
Parent waits until children terminate

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 16 / 31

A Tree of Processes in Linux

i ni t
pi d = 1

sshd
pi d = 3028

l ogi n
pi d = 8415

kthreadd
pi d = 2

sshd
pi d = 3610

pdfl ush
pi d = 200

khel per
pi d = 6

tcsch
pi d = 4005

emacs
pi d = 9204

bash
pi d = 8416

ps
pi d = 9298

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 17 / 31

Process Creation

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 18 / 31

C program of fork

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 19 / 31

Process Termination

Process executes last statement and then asks the operating
system to delete it using the exit() system call.

Returns status data from child to parent (via wait())
Process’ resources are deallocated by operating system

Parent may terminate the execution of children processes using
the abort() system call. Some reasons for doing so:

Child has exceeded allocated resources
Task assigned to child is no longer required
The parent is exiting and the operating systems does not allow a
child to continue if its parent terminates

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 20 / 31

Process Termination

Some operating systems do not allow child to exists if its parent
has terminated. If a process terminates, then all its children must
also be terminated.

cascading termination. All children, grandchildren, etc. are
terminated.
The termination is initiated by the operating system.

The parent process may wait for termination of a child process by
using the wait()system call. The call returns status information
and the pid of the terminated process
pid = wait(&status);
If parent terminated (died) without invoking wait, process is an
orphan
If no parent waiting (did not invoke wait()) process is a zombie
Zombie process - A child process has completed execution (died)
(via the exit system call) but still has an entry in the process table
This entry is still needed to allow the parent process to read its
child’s exit status (using the wait() sys call). Then the descriptor is
removed (no longer zombie).

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 21 / 31

Example of Zombie process

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
int main()
{
 pid_t pid, ppid;
 printf("Hello World1\n");
 pid=fork();
 if(pid==0)
 {
 exit(0);
 }
 else
 {
 while(1)
 {
 printf("I am the parent\n");
 printf("The PID of parent is %d\n",getpid());
 printf("The PID of parent of parent is %d\n",getppid());
 sleep(2);
 }
 }
}

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 22 / 31

Interprocess communications

Independent process cannot affect or be affected by the execution
of another process
Cooperating process can affect or be affected by the execution of
another process
Advantages of process cooperation

Information sharing
Computation speed-up
Modularity
Convenience

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 23 / 31

IPC mechanisms

Shared memory
Create shared memory region
When one process writes into this region, the other process can
see it and vice versa

Message passing
Explicitly send() and receive()

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 24 / 31

Producer-Consumer Problem

Paradigm for cooperating processes, producer process produces
information that is consumed by a consumer process

unbounded-buffer places no practical limit on the size of the buffer
bounded-buffer assumes that there is a fixed buffer size

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 25 / 31

Bounded-Buffer – Shared-Memory Solution

Shared data :

#define BUFFER_SIZE 10

typedef struct {

. . .

} item;

item buffer[BUFFER_SIZE];

int in = 0;

int out = 0;

Solution is correct, but can only use BUFFER SIZE-1 elements

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 26 / 31

Bounded Buffer : Producer

item next_produced;

while (true) {

/* produce an item in next produced */

while (((in + 1) % BUFFER_SIZE) == out)

; /* do nothing */

buffer[in] = next_produced;

in = (in + 1) % BUFFER_SIZE;

}

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 27 / 31

Bounded Buffer : Consumer

item next_consumed;

while (true) {

 while (in == out)

; /* do nothing */

next_consumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;

/* consume the item in next consumed */

}

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 28 / 31

Interprocess Communication – Shared Memory

An area of memory shared among the processes that wish to
communicate
The communication is under the control of the users processes
not the operating system.
Major issues is to provide mechanism that will allow the user
processes to synchronize their actions when they access shared
memory.

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 29 / 31

Interprocess Communication – Message Passing

Mechanism for processes to communicate and to synchronize
their actions
Message system – processes communicate with each other
without resorting to shared variables
IPC facility provides two operations:

send(message)
receive(message)

The message size is either fixed or variable

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 30 / 31

Interprocess Communication – Message Passing

If processes P and Q wish to communicate, they need to:
Establish a communication link between them
Exchange messages via send/receive
Implementation issues:

How are links established?
Can a link be associated with more than two processes?
How many links can there be between every pair of communicating
processes?
What is the capacity of a link?
Is the size of a message that the link can accommodate fixed or
variable?
Is a link unidirectional or bi-directional?

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 31 / 31

Wrapup

Processes are programs in execution
Kernel keeps track of them using process control blocks
PCBs are saved and restored at context switch

Schedulers choose the ready process to run
Processes create other processes
On exit, status returned to parent
Processes communicate with each other using shared memory or
message passing

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 32 / 31

