Lecture 3 - Process

Bibhas Ghoshal I0SY 332C & IOPS 332C: OS Autumn Semester, 2015 1/31



Lecture Outline

@ Process Concept

@ Process State

@ Process Control Block

@ Process Operation

@ Inter Process Communication :

Bibhas Ghoshal I0SY 332C & IOPS 332C: OS Autumn Semester, 2015 2/31



Process Concept

Process : Program in execution; process execution must progress in
sequential fashion; a process is more than a code.
A process includes the following:

@ The text section (code), data section (global variables)
@ Program counter and contents of registers
@ Stack to contain function parameters and return addresses

Bibhas Ghoshal I0SY 332C & IOPS 332C: OS Autumn Semester, 2015 3/3i



Process Concept contd.

Exec.c (Secondary Memory)

a.out (Primary Memory)

Process Control Block

Bibhas Ghoshal I0SY 332C & IOPS 332C: OS Autumn Semester, 2015 4/31



Process Structure

(for recursion calls)

for dynamic allocation)

Bibhas Ghoshal I0SY 332C & IOPS 332C: OS Autumn Semester, 2015 5//31



Process Attributes

@ Process ID : unique number assigned to each process
@ Program Counter
@ Process State

Bibhas Ghoshal I0SY 332C & IOPS 332C: OS Autumn Semester, 2015 6/31



Process Control Block

Information associated with each process and maintained by the
operating system

@ Process State

Bibhas Ghoshal I0SY 332C & IOPS 332C: OS Autumn Semester, 2015 7/31



Process Control Block

process state
process number

program counter

registers

memory limits

list of open files

Bibhas Ghoshal I0SY 332C & IOPS 332C: OS Autumn Semester, 2015



Process State

As a process executes, it changes state
@ new: The process is being created (process is in secondary
memory)
@ ready: process is waiting to be assigned to a processor (process
in main memory)
@ running: Instructions are being executed (process in main

Bibhas Ghoshal I0SY 332C & IOPS 332C: OS Autumn Semester, 2015 9/31



Process State Diagram

admitted interrupt i terminated

scheduler dispatch

1/0 or event completion 1/0 or event wait

Bibhas Ghoshal I0SY 332C & IOPS 332C: OS Autumn Semester, 2015 10/31



-]
CPU switch from PO to P1 : Context switching

Save all state of PO, restore all state of P1, save

process P, operating system process P,

interrupt or system call

executing J‘L
T save state into PCB,
reload state from PCB,

interrupt or system call

save state into PCB;

reload state from PCB,|

Bibhas Ghoshal I0SY 332C & IOPS 332C: OS Autumn Semester, 2015 11/31



Ready Queue and other Device Request

queue header PCB, PCB,

ready ‘ head )
queue ‘ tail registers registers
. .
mag head —=
tape - 1
unit 0 tail =

mag

Jape L PoB PCB,, PCB,

/ e S
disk head
unit 0 tail

erminal |__head +——] =

unit 0 ‘ tail "-/

head +——=

Bibhas Ghoshal I0SY 332C & IOPS 332C: OS

Autumn Semester, 2015 12/31



Scheduler

@ Long-term scheduler (or job scheduler) — selects which processes
should be brought into the ready queue
o invoked very infrequently (seconds, minutes) - (may be slow)
o should have mix of CPU bound process and I/O bound process
@ Short-term scheduler (or CPU scheduler) — selects which process
should be executed next and allocates CPU

Bibhas Ghoshal I0SY 332C & IOPS 332C: OS Autumn Semester, 2015 13/31



Numerical example

Consider a system with N processors and M processes, then

the number of processes that will be there in each of the following
states are:

Bibhas Ghoshal I0SY 332C & IOPS 332C: OS Autumn Semester, 2015 14 /31



Operations on Process

@ Process creation

o Parent creates new process forming a tree
o Child process can run concurrently with parent or not
o Child can share all resources, some or none at all

@ Process Scheduling

Bibhas Ghoshal I0SY 332C & IOPS 332C: OS Autumn Semester, 2015 15/31



Process Creation

@ Parent process create children processes, which, in turn create
other processes, forming a tree of processes

@ Generally, process identified and managed via a process identifier
(pid)

Bibhas Ghoshal I0SY 332C & IOPS 332C: OS Autumn Semester, 2015 16/31



A Tree of Processes in Linux

=D sshd
pid = 8416 pid=6 pid =200 pid = 3610

Bibhas Ghoshal I0SY 332C & IOPS 332C: OS Autumn Semester, 2015 17/31



Process Creation

parent "/ ) resumes

Bibhas Ghoshal I0SY 332C & IOPS 332C: OS Autumn Semester, 2015 18/31



|
C program of fork

#include <sys/types.h>
#include <stdio.h>
#include <unistd.h>

int main()
pidt pid;

/* fork a child process */
pid = fork();

if (pid < 0) { /* error occurred */
fprintf (stderr, "Fork Failed");
return 1;

}
else if (pid == 0) { /% child process */
execlp("/bin/1s","1s",NULL) ;

else { /x parent process */
/* parent will wait for the child to complete */
wait (NULL);
printf("Child Complete");

}

return 0;

Bibhas Ghoshal I0SY 332C & IOPS 332C: OS Autumn Semester, 2015 19/31



Process Termination

@ Process executes last statement and then asks the operating
system to delete it using the exit() system call.
o Returns status data from child to parent (via wait())
o Process’ resources are deallocated by operating system

Bibhas Ghoshal I0SY 332C & IOPS 332C: OS Autumn Semester, 2015 20/31



Process Termination

@ Some operating systems do not allow child to exists if its parent
has terminated. If a process terminates, then all its children must
also be terminated.

o cascading termination. All children, grandchildren, etc. are
terminated.
o The termination is initiated by the operating system.
@ The parent process may wait for termination of a child process by

Bibhas Ghoshal I0SY 332C & IOPS 332C: OS Autumn Semester, 2015 21/81



Example of Zombie process

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
int main()
{
pid_t pid, ppid;
printf("Hello World1\n");

Bibhas Ghoshal I0SY 332C & IOPS 332C: OS Autumn Semester, 2015 22/31



Interprocess communications

@ Independent process cannot affect or be affected by the execution
of another process

o Cooperating process can affect or be affected by the execution of

Bibhas Ghoshal I0SY 332C & IOPS 332C: OS Autumn Semester, 2015 23/31



IPC mechanisms

@ Shared memory
o Create shared memory region
o When one process writes into this region, the other process can
see it and vice versa
@ Message passing

i

Bibhas Ghoshal I0SY 332C & IOPS 332C: OS Autumn Semester, 2015 24/ 31



Producer-Consumer Problem

@ Paradigm for cooperating processes, producer process produces

Bibhas Ghoshal I0SY 332C & IOPS 332C: OS Autumn Semester, 2015 25/31



Bounded-Buffer — Shared-Memory Solution

@ Shared data :

#define BUFFER_SIZE 10

Bibhas Ghoshal I0SY 332C & IOPS 332C: OS Autumn Semester, 2015 26/ 31



Bounded Buffer : Producer

item next_produced;

while (true) {

Bibhas Ghoshal I0SY 332C & IOPS 332C: OS Autumn Semester, 2015 27 /31



Bounded Buffer : Consumer

item next_consumed;
while (true) {

Bibhas Ghoshal I0SY 332C & IOPS 332C: OS Autumn Semester, 2015 28/ 31



Interprocess Communication — Shared Memory

@ An area of memory shared among the processes that wish to
communicate

Bibhas Ghoshal I0SY 332C & IOPS 332C: OS Autumn Semester, 2015 29/831



Interprocess Communication — Message Passing

@ Mechanism for processes to communicate and to synchronize
their actions

o Message system — processes communicate with each other

Bibhas Ghoshal I0SY 332C & IOPS 332C: OS Autumn Semester, 2015 30/ 31



Interprocess Communication — Message Passing

@ If processes P and Q wish to communicate, they need to:

o Establish a communication link between them
o Exchange messages via send/receive
o Implementation issues:

Bibhas Ghoshal I0SY 332C & IOPS 332C: OS Autumn Semester, 2015 31/31



Wrapup

@ Processes are programs in execution

o Kernel keeps track of them using process control blocks
o PCBs are saved and restored at context switch

Bibhas Ghoshal I0SY 332C & IOPS 332C: OS Autumn Semester, 2015 32/31



