Lecture 2 - Fundamental Concepts

Bibhas Ghoshal I0SY 332C & IOPS 332C: OS Autumn Semester, 2015 1/43

Lecture Outline

@ Operating System Overview : Re-visit
@ Computer System Operation

@ Storage Structure

@ Storage Hierarchy

@ Hardware protection
Q Interactlng with serwces provided by the oS

Bibhas Ghoshal I0SY 332C & IOPS 332C: OS Autumn Semester, 2015 2/43

Operating system Overview

@ Operating System allows the user to achieve the intended purpose
of using the computer system in a fast and efficient manner

Q Operatmg system controls and coordinates use of hardware

Bibhas Ghoshal I0SY 332C & IOPS 332C: OS Autumn Semester, 2015 3/43

Computer System

Banking Airline Web
system reservation browser
Command
Compilers Editors interpreter

Operating system

Machine language

Microarchitecture

Physical devices

Bibhas Ghoshal I0SY 332C & IOPS 332C: OS

* Application programs

System
 programs

!
|

¢ Hardware

Autumn Semester, 2015

Operating System Overview

Operating System Structure
@ Multiprogramming needed for efficiency
@ Timesharing (multitasking)

Bibhas Ghoshal I0SY 332C & IOPS 332C: OS Autumn Semester, 2015 5/43

Hardware Control Aspect of the Operating System

@ Acts as an intermediary between user and hardware
@ Resource allocator

Bibhas Ghoshal I0SY 332C & IOPS 332C: OS Autumn Semester, 2015 6/43

Computer Hardware Review

Hardware issues of concern to OS Designers

Computer System : CPU, Memory and I/O connected through buses
to communicate among each other
@ CPU : Fetches instruction from memory and executes them
o CPU has specific instruction set that it executes

Bibhas Ghoshal I0SY 332C & IOPS 332C: OS Autumn Semester, 2015 7/43

|
Storage Structure

registers ﬁ

cache

-
[

II v
| electronic disk

&

Il
1l L 2
| magnetic disk

LS|
1T

‘ optical disk I)

#

|
1 v
magnetic tapes I/

Bibhas Ghoshal I0SY 332C & IOPS 332C: OS Autumn Semester, 2015

Caching Principle

@ Caching is an important principle, performed at many levels in a
computer (in hardware, operating system, software)

@ Information “in use” is copied from slower to faster storage
temporarily

o Faster storage (cache) checked first to determine if information is

Bibhas Ghoshal I0SY 332C & IOPS 332C: OS Autumn Semester, 2015 9/43

Typical Computer Architecture

el

I

Bibhas Ghoshal I0SY 332C & IOPS 332C: OS Autumn Semester, 2015 10/43

Computer System Operation

@ /O devices and the CPU can execute concurrently.
@ Each device controller is in charge of a particular device type.
@ Each device controller has a local buffer.

Bibhas Ghoshal I0SY 332C & IOPS 332C: OS Autumn Semester, 2015 11/43

Common Functions of Interrupts

@ Interrupts transfers control to the interrupt service routine
generally, through the interrupt vector, which contains the
addresses of all the service routines.

@ Interrupt architecture must save the address of the interrupted

Bibhas Ghoshal I0SY 332C & IOPS 332C: OS Autumn Semester, 2015

12/43

Interrupt Handling

@ The operating system preserves the state of the CPU by storing

Bibhas Ghoshal I0SY 332C & IOPS 332C: OS Autumn Semester, 2015 13/43

I/O Structure

@ After I/O starts, control returns to user program only upon I/O
completion.
o wait instruction idles the CPU until the next interrupt
o wait loop (contention for memory access). At most one I/O request
is outstanding at a time, no simultaneous I/O processing.

Bibhas Ghoshal I0SY 332C & IOPS 332C: OS Autumn Semester, 2015 14/43

Hardware Protection

@ Dual-Mode Operation

Bibhas Ghoshal I0SY 332C & IOPS 332C: OS Autumn Semester, 2015 15/43

Dual Mode Operation

@ Sharing system resources requires operating system to ensure
that an incorrect program cannot cause other programs to execute
incorrectly.

Bibhas Ghoshal I0SY 332C & IOPS 332C: OS Autumn Semester, 2015 16/43

Dual Mode Operation contd..

@ Mode bit added to computer hardware to indicate the current
mode: monitor (0) or user (1).

@ When an interrupt or fault occurs hardware switches to monitor
mode.

Bibhas Ghoshal I0SY 332C & IOPS 332C: OS Autumn Semester, 2015

17 /43

I/O Protection

@ All I/O instructions are privileged instructions.

Bibhas Ghoshal I0SY 332C & IOPS 332C: OS Autumn Semester, 2015 18/43

Memory Protection

@ Must provide memory protection at least for the interrupt vector
and the interrupt service routines.

ada two

- Base register : holds the smallest legal physical memory address.
- Limit register : contains the size of the range

Bibhas Ghoshal I0SY 332C & IOPS 332C: OS Autumn Semester, 2015 19/43

A Base And A Limit Register define A Logical Address
Space

Bibhas Ghoshal I0SY 332C & IOPS 332C: OS Autumn Semester, 2015 20/43

Protection Hardware

b el

Bibhas Ghoshal I0SY 332C & IOPS 332C: OS Autumn Semester, 2015 21/43

CPU Protection

@ Timer — interrupts computer after specified period to ensure
operatmg system maintains control.

Bibhas Ghoshal I0SY 332C & IOPS 332C: OS Autumn Semester, 2015 22/43

General-System Architecture

@ Given the /O instructions are privileged, how does the user

- System call

Bibhas Ghoshal I0SY 332C & IOPS 332C: OS Autumn Semester, 2015 23/43

System Calls

@ Programming interface to the services provided by the OS

@ Typically written in a high-level language (C, C++). Maybe in
assembly

@ Performs basic functions that requires communication with CPU,

Bibhas Ghoshal I0SY 332C & IOPS 332C: OS Autumn Semester, 2015 24/ 43

System Calls contd...

@ System call usually takes the form of a trap to a specific location in
the interrupt vector. Control passes through the interrupt vector to
a service routine in the OS, and the mode bit is set to monitor

user mode

ode bit =
m system call (mode bit =1

——————
K | return
emel mode bit = 0 mode bit = 1
T execute system call (

Bibhas Ghoshal I0SY 332C & IOPS 332C: OS Autumn Semester, 2015

Use of APlIs in system calls

@ System calls are mostly accessed by programs via a high-level
Application Program Interface (API) rather than direct system
call use

@ Three most common APls are Win32 API for Windows, POSIX
API for POS (including virtually all versions of

Bibhas Ghoshal I0SY 332C & IOPS 332C: OS Autumn Semester, 2015 26/ 43

API — System Call — OS Relationship

user application

open ()
user

mode
system call interface
kernel

mode

open ()

Implementation
of open ()
system call

return

Bibhas Ghoshal I0SY 332C & IOPS 332C: OS Autumn Semester, 2015 27/43

Example of API-System call

@ System call sequence to copy the contents of one file to another
file (POSIX like C pseudo code) (bold are API system calls)

write(1, “Input file”, 11);

() D a ()()

Bibhas Ghoshal I0SY 332C & IOPS 332C: OS Autumn Semester, 2015 28/43

Standard C library example

Some library calls themselves make system calls
ex: C program invoking printf library call which calls write system call

#include <stdio.h>
int main ()

— printf ("Greetings");
.

eturn o;

standard C library

Qrite) >
write ()
system call

Bibhas Ghoshal I0SY 332C & IOPS 332C: OS Autumn Semester, 2015 29/43

Steps in Making a System Call, Example : read call

read(fd,buffer,nbytes)

Address

User space

6

Return to caller

Trap to the kernel

Library

Put code for read in register

Increment SP

Call read

Push fd

Push &buffer

Push nbytes

9,

)

4

Kernel space) 7 s
(Operating system) Dispatch |_>

Bibhas Ghoshal

I0SY 332C & IOPS 332C: OS

pi
read

User program
calling read

Autumn Semester, 2015

System Call Implementation

@ A number associated with each system call

o System-call interface maintains a table indexed according to these
numbers
Additional info: check /usr/include/sys/syscall.h

@ The system call interface invokes intended system call in OS

Bibhas Ghoshal I0SY 332C & IOPS 332C: OS Autumn Semester, 2015 31/43

System Call Parameter Passing

@ More information is required than simply identity of desired system
call

@ Three general methods used to pass parameters to the OS

o Simplest: pass the parameters in hardware registers

Bibhas Ghoshal I0SY 332C & IOPS 332C: OS Autumn Semester, 2015 32/43

Parameter Passing via Table

register

X: parameters
for call

use parameters code for
load address X — from table X system
system call 13 > call 13

user program

operating system

Bibhas Ghoshal I0SY 332C & IOPS 332C: OS Autumn Semester, 2015 33/43

-]
Use of A System Call

system
call
table

User
Program

1. system service is requested (system call)

call
2. switch mode; verify arguments and service roufines

3. branch to the service function via system call table
4. retum from senvice function; switch mode Operating
5.retum from system call ystem

Bibhas Ghoshal I0SY 332C & IOPS 332C: Autumn Semester, 2015 34/43

Some System Calls For Process Management

Process management
Call Description
pid = fork() Create a child process identical to the parent
pid = waitpid(pid, &statloc, options) Wait for a child to terminate

S = execve(name, argv, environp) Replace a process’ core image
exit(status) Terminate process execution and return status

Bibhas Ghoshal I0SY 332C & IOPS 332C: OS Autumn Semester, 2015 35/43

Some System Calls For Directory Management

Directory and file system management

Call

Description

s = mkdir(name, mode)

Create a new directory

s = rmdir(name)

Remove an empty directory

s = link(name1, name2)

Create a new entry, name2, pointing to nameft

s = unlink(name)

Remove a directory entry

s = mount(special, name, flag)

Mount a file system

s = umount(special)

Unmount a file system

Bibhas Ghoshal

I0SY 332C & IOPS 332C: OS

Autumn Semester, 2015

Some System Calls For Miscellaneous Tasks

Miscellaneous
Call Description
s = chdir(dirname) Change the working directory
s = chmod(name, mode) Change a file’s protection bits
s = kill(pid, signal) Send a signal to a process
seconds = time(&seconds) Get the elapsed time since Jan. 1, 1970

Bibhas Ghoshal I0SY 332C & IOPS 332C: OS Autumn Semester, 2015 37/43

-]
System Call Example

[UNIX Win32 Description
fork CreateProcess Create a new process
waitpid | WaitForSingleObject | Can wait for a process to exit
execve | (none) CreateProcess = fork + execve
exit ExitProcess Terminate execution
open CreateFile Create a file or open an existing file
close CloseHandle Close a file
read ReadFile Read data from a file
write WriteFile Write data to a file

Iseek

SetFilePointer

Move the file pointer

stat

GetFileAttributesEx

Get various file attributes

mkdir CreateDirectory Create a new directory

rmdir RemoveDirectory Remove an empty directory

link (none) Win32 does not support links

unlink DeleteFile Destroy an existing file

mount | (none) Win32 does not support mount

umount | (none) Win32 does not support mount

chdir SetCurrentDirectory | Change the current working directory

chmod | (none) Win32 does not support security (although NT does)

kill

(none)

Win32 does not support signals

time

Bibhas Ghoshal

GetlocalTime

I0SY 332C & IOPS 332C: OS

Get the current time

Autumn Semester, 2015

System programs

@ Provide a convenient environment for program development and
execution. Some of them are simply user interfaces to system
calls; others are considerably more complex

o File management - Create, delete, copy, edit, rename, print, dump,
list, and generally manipulate files and directories
o Programming-language support - Compilers, assemblers,

Bibhas Ghoshal I0SY 332C & IOPS 332C: OS Autumn Semester, 2015 39/43

Interfacing with OS

User Interface

@ Command Line Interface (CLI) : The command line may itself
perform functions or call other system programs to implement
functions (e.g. in UNIX, /bin/rm to remove files). Examples are

N m 0 N NiNoo

Bibhas Ghoshal I0SY 332C & IOPS 332C: OS Autumn Semester, 2015

40/43

Operating System Generation

@ Operating systems are designed to run on any of a class of
machines; the system must be configured for each specific
computer site

Bibhas Ghoshal I0SY 332C & IOPS 332C: OS Autumn Semester, 2015 41/43

System Boot

Operating system must be made available to hardware so hardware
can start it

@ Small piece of code — bootstrap loader, locates the kernel, loads it

Bibhas Ghoshal I0SY 332C & IOPS 332C: OS Autumn Semester, 2015 42/43

Some Fundamental Concepts about OS

@ Process
@ Memory
o Files
Process : Program in execution

@ Address Space - list of address locations which the process can
read or write. Address space contains the following:

Bibhas Ghoshal I0SY 332C & IOPS 332C: OS Autumn Semester, 2015 43/43

