
Lecture 2 - Fundamental Concepts

Instructor : Bibhas Ghoshal (bibhas.ghoshal@iiita.ac.in)

Autumn Semester, 2015

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 1 / 43

Lecture Outline

Operating System Overview : Re-visit
Computer System Operation
Storage Structure
Storage Hierarchy
Hardware protection
Interacting with services provided by the OS

System calls - link between application programs and OS
System programs - users interact using programs

Installation, customization etc.
booting

References and Illustrations have been used from:
lecture slides of the book - Operating System Concepts by
Silberschatz, Galvin and Gagne, 2005
Modern Operating System by Andrew S. Tanenbaum
lecture slides of CSE 30341: Operating Systems (Instructor :
Surendar Chandra),

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 2 / 43

Operating system Overview

Operating System allows the user to achieve the intended purpose
of using the computer system in a fast and efficient manner
Operating system controls and coordinates use of hardware
among various applications and users

Key concerns of Operating System
Programs
Resources
Scheduling
Protection

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 3 / 43

Computer System

Figure : Computer System

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 4 / 43

Operating System Overview

Operating System Structure
Multiprogramming needed for efficiency
Timesharing (multitasking)
Multi-user
OS should protect the users/processes from each other as well as
protect itself from users
Dual-mode operation allows OS to protect itself and other system
components

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 5 / 43

Hardware Control Aspect of the Operating System

Acts as an intermediary between user and hardware
Resource allocator
Control program
Operating Systems cannot make hardware go faster. However,
OS can make hardware appear faster.

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 6 / 43

Computer Hardware Review
Hardware issues of concern to OS Designers

Computer System : CPU, Memory and I/O connected through buses
to communicate among each other

CPU : Fetches instruction from memory and executes them
CPU has specific instruction set that it executes
Registers - General Purpose and Special Purpose (Program
Counter and Stack Pointer)
Program Status Word : contains condition code bits, CPU priority,
mode (kernel/user) etc. PSW plays important role in system calls
and I/O
Techniques to improve performance : Pipelining, Superscalar CPU
etc.

Memory : Should be extremely fast, abundantly large and cheap
No technology satisfies it :-(

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 7 / 43

Storage Structure

Figure : Storage structure

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 8 / 43

Caching Principle

Caching is an important principle, performed at many levels in a
computer (in hardware, operating system, software)
Information “in use” is copied from slower to faster storage
temporarily
Faster storage (cache) checked first to determine if information is
there

If it is (cache hit), information used directly from the cache (fast)
If not (cache miss), data copied to cache and used there
May need to evict some other data (cache replacement)

Cache smaller than storage being cached
Cache management important design problem
Cache size and replacement policies are important
Sometimes bring data before needed (pre-fetch)

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 9 / 43

Typical Computer Architecture

Figure : Computer Architecture

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 10 / 43

Computer System Operation

I/O devices and the CPU can execute concurrently.
Each device controller is in charge of a particular device type.
Each device controller has a local buffer.
CPU moves data from/to main memory to/from local buffers
I/O is from the device to local buffer of controller.
Device controller informs CPU that it has finished its operation by
causing an interrupt.

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 11 / 43

Common Functions of Interrupts

Interrupts transfers control to the interrupt service routine
generally, through the interrupt vector, which contains the
addresses of all the service routines.
Interrupt architecture must save the address of the interrupted
instruction.
Incoming interrupts are disabled while another interrupt is being
processed to prevent a lost interrupt.
A trap is a software-generated interrupt caused either by an error
or a user request.
An operating system is interrupt driven.

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 12 / 43

Interrupt Handling

The operating system preserves the state of the CPU by storing
registers and the program counter.
Determines which type of interrupt has occurred:

polling
vectored interrupt system

Separate segments of code determine what action should be
taken for each type of interrupt

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 13 / 43

I/O Structure

After I/O starts, control returns to user program only upon I/O
completion.

wait instruction idles the CPU until the next interrupt
wait loop (contention for memory access). At most one I/O request
is outstanding at a time, no simultaneous I/O processing.

After I/O starts, control returns to user program without waiting for
I/O completion.

System call – request to the operating system to allow user to wait
for I/O completion.
Device-status table contains entry for each I/O device indicating its
type, address, and state.
Operating system indexes into I/O device table to determine device
status and to modify table entry to include interrupt.

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 14 / 43

Hardware Protection

Dual-Mode Operation
I/O Protection
Memory Protection
CPU Protection

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 15 / 43

Dual Mode Operation

Sharing system resources requires operating system to ensure
that an incorrect program cannot cause other programs to execute
incorrectly.
Provide hardware support to differentiate between at least two
modes of operations.

User mode – execution done on behalf of a user.
Monitor mode (also supervisor mode or system mode) – execution
done on behalf of operating system.

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 16 / 43

Dual Mode Operation contd..

Mode bit added to computer hardware to indicate the current
mode: monitor (0) or user (1).
When an interrupt or fault occurs hardware switches to monitor
mode.

 Interrupt/fault

 set user mode

monitor user

Figure : Dual Mode

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 17 / 43

I/O Protection

All I/O instructions are privileged instructions.
Must ensure that a user program could never gain control of the
computer in monitor mode (I.e., a user program that, as part of its
execution, stores a new address in the interrupt vector).

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 18 / 43

Memory Protection

Must provide memory protection at least for the interrupt vector
and the interrupt service routines.
In order to have memory protection, add two registers that
determine the range of legal addresses a program may access:

Base register : holds the smallest legal physical memory address.
Limit register : contains the size of the range

Memory outside the defined range is protected.

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 19 / 43

A Base And A Limit Register define A Logical Address
Space

Figure : Memory Protection

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 20 / 43

Protection Hardware

Figure : Protection Hardware

When executing in monitor mode, the operating system has
unrestricted access to both monitor and user’s memory.
The load instructions for the base and limit registers are privileged
instructions.

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 21 / 43

CPU Protection

Timer – interrupts computer after specified period to ensure
operating system maintains control.

Timer is decremented every clock tick.
When timer reaches the value 0, an interrupt occurs.

Timer commonly used to implement time sharing.
Load-timer is a privileged instruction.

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 22 / 43

General-System Architecture

Given the I/O instructions are privileged, how does the user
program perform I/O?
System call – the method used by a process to request action by
the operating system.

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 23 / 43

System Calls

Programming interface to the services provided by the OS
Typically written in a high-level language (C, C++). Maybe in
assembly
Performs basic functions that requires communication with CPU,
memory and devices
All activities related to file handling, memory managemnt and
process management are handled by system calls

Examples :
getuid() - get the user ID
fork() - create a child process
exec() - executing a program

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 24 / 43

System Calls contd...

System call usually takes the form of a trap to a specific location in
the interrupt vector. Control passes through the interrupt vector to
a service routine in the OS, and the mode bit is set to monitor
mode.
The OS verifies that the parameters are correct and legal,
executes the request, and returns control to the instruction
following the system call.

Figure : System Call for I/O

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 25 / 43

Use of APIs in system calls

System calls are mostly accessed by programs via a high-level
Application Program Interface (API) rather than direct system
call use
Three most common APIs are Win32 API for Windows, POSIX
API for POSIX-based systems (including virtually all versions of
UNIX, Linux, and Mac OS X), and Java API for the Java virtual
machine (JVM)
Why use APIs rather than system calls?

Underlying systems calls (error codes) can be more complicated.
API gives a uniform, portable interface
One need not remeber I/O registers or order of I/O operation

APIs example : BOOL ReadFile c(HANDLE file, LPVOID buffer,
DWORD bytes to read, LPDWORD bytes read, LPOVERLAPPED ovl);

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 26 / 43

API – System Call – OS Relationship

Figure : api system call

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 27 / 43

Example of API-System call

System call sequence to copy the contents of one file to another
file (POSIX like C pseudo code) (bold are API system calls)

write(1, “Input file”, 11);
read(0, &buffer, 100);
...........
fd = open(buffer,O RDONLY);
outfd = open(buffer,O WRONLY|O CREAT|O TRUNC,0666);
if(outfd<0)abort(“File creation failed”);
............
closefd;

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 28 / 43

Standard C library example

Some library calls themselves make system calls
ex: C program invoking printf library call which calls write system call

Figure : Example of system call

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 29 / 43

Steps in Making a System Call, Example : read call

read(fd,buffer,nbytes)

Figure : System Call Steps

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 30 / 43

System Call Implementation

A number associated with each system call
System-call interface maintains a table indexed according to these
numbers
Additional info: check /usr/include/sys/syscall.h

The system call interface invokes intended system call in OS
kernel and returns status of the system call and any return values
The caller need know nothing about how the system call is
implemented

Just needs to obey API and understand what OS will do as a result
call
Details of OS interface hidden from programmer by API
Managed by run-time support library (set of functions built into
libraries included with compiler)

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 31 / 43

System Call Parameter Passing

More information is required than simply identity of desired system
call
Three general methods used to pass parameters to the OS

Simplest: pass the parameters in hardware registers
Parameters stored in a block, or table, in memory, and address of
block passed as a parameter in a register (This approach taken by
Linux and Solaris)
Parameters placed, or pushed, onto the stack by the program and
popped off the stack by the operating system. Block and stack
methods do not limit the number or length of parameters being
passed

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 32 / 43

Parameter Passing via Table

Figure :

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 33 / 43

Use of A System Call

Figure : System Call Processsing

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 34 / 43

Some System Calls For Process Management

Figure : system call process management

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 35 / 43

Some System Calls For Directory Management

Figure : system call directory management

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 36 / 43

Some System Calls For Miscellaneous Tasks

Figure : system call misc

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 37 / 43

System Call Example

Figure : system call example

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 38 / 43

System programs

Provide a convenient environment for program development and
execution. Some of them are simply user interfaces to system
calls; others are considerably more complex

File management - Create, delete, copy, edit, rename, print, dump,
list, and generally manipulate files and directories
Programming-language support - Compilers, assemblers,
debuggers and interpreters sometimes provided
Program loading and execution- Absolute loaders, relocatable
loaders, linkage editors, and overlay-loaders, debugging systems
for higher-level and machine language
Communications - chat, web browsing, email, remote login, file
transfers
Status information - system info such as date, time, amount of
available memory, disk space, number of users

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 39 / 43

Interfacing with OS

User Interface
Command Line Interface (CLI) : The command line may itself
perform functions or call other system programs to implement
functions (e.g. in UNIX, /bin/rm to remove files). Examples are
shell in UNIX and command.exe in Windows
Graphics User Interface (GUI) : Point and click interface.
Examples are MS windows, MAC OS X Aqua, Unix X & variants.
Batch : Commands are given using a file/command script to the
OS and are executed with little user interaction. Examples are
.bat files in DOS, shell scripts

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 40 / 43

Operating System Generation

Operating systems are designed to run on any of a class of
machines; the system must be configured for each specific
computer site
SYSGEN program obtains information concerning the specific
configuration of the hardware system
Booting – starting a computer by loading the kernel
Bootstrap program – code stored in ROM that is able to locate the
kernel, load it into memory, and start its execution

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 41 / 43

System Boot

Operating system must be made available to hardware so hardware
can start it

Small piece of code – bootstrap loader, locates the kernel, loads it
into memory, and starts it
Sometimes two-step process where boot block at fixed location
loads bootstrap loader
When power initialized on system, execution starts at a fixed
memory location - Firmware used to hold initial boot code

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 42 / 43

Some Fundamental Concepts about OS

Process
Memory
Files

Process : Program in execution
Address Space - list of address locations which the process can
read or write. Address space contains the following:

program, program’s data and stack
registers associated with the program
Program counter and Stack Pointer
PSW

When a process is suspended temporarily (such as in time
sharing system), it must be restarted in the same state in which it
was stopped - information about process needs to be saved

information of a suspended process is stored in process table
Deadlock : Two interacting process get into a stalemate position
through which they cannot get out (Analogous to deadlock in
traffic)

Bibhas Ghoshal IOSY 332C & IOPS 332C: OS Autumn Semester, 2015 43 / 43

