
page 109/16/15 CSE 30341: Operating Systems Principles

Semaphore synchronization primitive

 Test And Set are hard to program for end users
 Introduce a simple function called semaphore:

 Semaphore is an integer, S
 Only legal operations on S are:

 Wait() [atomic] - if S > 0, decrement S else loop
 Signal() [atomic] - increment S

 wait (S) {
 while S <= 0

 ; // no-op
 S--;
 }
 signal (S) {
 S++;
 }
 Counting (S: is unrestricted), binary (mutex lock) (S: 0, 1)

page 209/16/15 CSE 30341: Operating Systems Principles

Semaphore usage example

 Assume synch is initialized to 0
 P2:

Wait(synch);

Statements2;

 P1:
Statements1;

signal(synch);

page 309/16/15 CSE 30341: Operating Systems Principles

Semaphore Implementation

 Must guarantee that no two processes can
execute wait () and signal () on the same
semaphore at the same time

 Thus, implementation becomes the critical
section problem where the wait and signal code
are placed in the critical section.
 Could now have busy waiting in critical section

implementation
 But implementation code is short
 Little busy waiting if critical section rarely occupied

 Note that applications may spend lots of time in
critical sections and therefore this is not a good
solution.

page 409/16/15 CSE 30341: Operating Systems Principles

Semaphore Implementation with no
Busy waiting
 With each semaphore there is an associated

waiting queue. Each entry in a waiting queue has
two data items:
 value (of type integer)
 pointer to next record in the list

 Two operations:
 block – place the process invoking the operation on the

 appropriate waiting queue
 wakeup – remove one of processes in the waiting queue

and place it in the ready queue

page 509/16/15 CSE 30341: Operating Systems Principles

Semaphore Implementation with no
Busy waiting (Cont.)
 wait (S) {

 value--;

 if (value < 0) {

 add this process to waiting queue

 block(); }

 }

 Signal (S) {

 value++;

 if (value <= 0) {

 remove a process P from the waiting queue

 wakeup(P); }

 }

page 609/16/15 CSE 30341: Operating Systems Principles

Condition Variables

 condition x, y;

 Two operations on a condition variable:
 x.wait () – a process that invokes the operation is

 suspended.
 x.signal () – resumes one of processes (if any) that

 invoked x.wait ()

page 709/16/15 CSE 30341: Operating Systems Principles

Monitors

 A high-level abstraction that provides a convenient and
effective mechanism for process synchronization

 Only one process may be active within the monitor at a time
monitor monitor-name
{
// shared variable declarations
procedure P1 (…) { …. }

…
procedure Pn (…) {……}
 Initialization code (….) { … }

…
}
}

 In Java, declaring a method synchronized to get monitor like
behavior
 What happens to shared variables which are not protected by

this monitor?

page 809/16/15 CSE 30341: Operating Systems Principles

Solution to Dining Philosophers using Monitors

monitor DP
 {

enum { THINKING; HUNGRY, EATING) state [5] ;
condition self [5];

void pickup (int i) {
 state[i] = HUNGRY;
 test(i);
 if (state[i] != EATING) self [i].wait;
}

 void putdown (int i) {
 state[i] = THINKING;

 // test left and right neighbors
 test((i + 4) % 5);
 test((i + 1) % 5);

 }

page 909/16/15 CSE 30341: Operating Systems Principles

Solution to Dining Philosophers (cont)

void test (int i) {
 if ((state[(i + 4) % 5] != EATING) &&
 (state[i] == HUNGRY) &&
 (state[(i + 1) % 5] != EATING)) {
 state[i] = EATING ;

 self[i].signal () ;
 }
 }

 initialization_code() {
 for (int i = 0; i < 5; i++)
 state[i] = THINKING;
}

}

page 1009/16/15 CSE 30341: Operating Systems Principles

Deadlock and Starvation

 Deadlock – two or more processes are waiting indefinitely for
an event that can be caused by only one of the waiting
processes

 Let S and Q be two semaphores initialized to 1
P0 P1

 wait (S); wait (Q);
 wait (Q); wait (S);
. .
. .
. .
 signal (S); signal (Q);
 signal (Q); signal (S);

 Starvation – indefinite blocking. A process may never be
removed from the semaphore queue in which it is
suspended.

page 1109/16/15 CSE 30341: Operating Systems Principles

Synchronization Examples

 Solaris
 Windows XP
 Linux
 Pthreads

page 1209/16/15 CSE 30341: Operating Systems Principles

Solaris Synchronization

 Implements a variety of locks to support
multitasking, multithreading (including real-time
threads), and multiprocessing

 Uses adaptive mutexes for efficiency when
protecting data from short code segments

 Uses condition variables and readers-writers locks
when longer sections of code need access to data

 Uses turnstiles to order the list of threads waiting
to acquire either an adaptive mutex or reader-writer
lock

page 1309/16/15 CSE 30341: Operating Systems Principles

Windows XP Synchronization

 Uses interrupt masks to protect access to global
resources on uniprocessor systems

 Uses spinlocks on multiprocessor systems
 Also provides dispatcher objects which may act as

either mutexes and semaphores
 Dispatcher objects may also provide events

 An event acts much like a condition variable

page 1409/16/15 CSE 30341: Operating Systems Principles

Linux Synchronization

 Linux:
 disables interrupts to implement short critical sections

 Linux provides:
 semaphores
 spin locks

page 1509/16/15 CSE 30341: Operating Systems Principles

Pthreads Synchronization

 Pthreads API is OS-independent
 It provides:

 mutex locks
 condition variables

 Non-portable extensions include:
 read-write locks
 spin locks

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

