
page 109/16/15 CSE 30341: Operating Systems Principles

Solution to Critical-Section Problem

 Solution must satisfy three requirements:
1. Mutual Exclusion - If process Pi is executing in its critical

section, then no other processes can be executing in
their critical sections

2. Progress - If no process is executing in its critical section
and there exist some processes that wish to enter their
critical section, then only those processes that are not
executing in their remainder section can participate in the
decision on which will enter its critical section next and
this selection cannot be postponed indefinitely

3. Bounded Waiting - A bound must exist on the number of
times that other processes are allowed to enter their
critical sections after a process has made a request to
enter its critical section and before that request is granted

 Assume that each process executes at a nonzero speed
 No assumption concerning relative speed of the N

processes

page 209/16/15 CSE 30341: Operating Systems Principles

Classic s/w soln: Peterson’s Solution

 Restricted to two processes
 Assume that the LOAD and STORE instructions

are atomic; that is, cannot be interrupted (not true
for modern processors)

 The two threads share two variables:
 int turn;
 Boolean flag[2]

 The variable turn indicates whose turn it is to enter
the critical section.

 The flag array is used to indicate if a process is
ready to enter the critical section. flag[i] = true
implies that process Pi is ready!

page 309/16/15 CSE 30341: Operating Systems Principles

Algorithm for Process Pi

do {
 flag[i] = TRUE;
 turn = j;
 while (flag[j] && turn == j);
 CRITICAL SECTION
 flag[i] = FALSE;
 REMAINDER SECTION
 } while (TRUE);

1) Mutual exclusion because only way thread enter critical
section when flag[j] == FALSE or turn == TRUE

2) Only way to enter section is by flipping flag[] inside loop
3) turn = j allows the other thread to make progress

page 409/16/15 CSE 30341: Operating Systems Principles

Synchronization Hardware

 Many systems provide hardware support for critical
section code

 Uniprocessors – could disable interrupts
 Currently running code would execute without

preemption
 Generally too inefficient on multiprocessor systems

 Have to wait for disable to propagate to all processors
 Operating systems using this not broadly scalable

 Modern machines provide special atomic hardware
instructions

 Atomic = non-interruptable

 Either test memory word and set value
 Or swap contents of two memory words

page 509/16/15 CSE 30341: Operating Systems Principles

Solution using TestAndSet

 Definition of TestAndSet:
 boolean TestAndSet (boolean *target) {
 boolean rv = *target;
 *target = TRUE;
 return rv:
 }
 Shared boolean variable lock., initialized to false.
 Solution:
 do {
 while (TestAndSet (&lock))
 ; /* do nothing
 // critical section
 lock = FALSE;
 // remainder section
 } while (TRUE);

page 609/16/15 CSE 30341: Operating Systems Principles

Solution using Swap
 Definition of Swap:
 void Swap (boolean *a, boolean *b) {
 boolean temp = *a;
 *a = *b;
 *b = temp:
 }
 Shared Boolean variable lock initialized to FALSE; Each

process has a local Boolean variable key.
 Solution:
 do {
 key = TRUE;
 while (key == TRUE)
 Swap (&lock, &key);
 // critical section
 lock = FALSE;
 // remainder section
 } while (TRUE);

page 709/16/15 CSE 30341: Operating Systems Principles

Solution with TestAndSet and bounded
wait
 boolean waiting[n]; boolean lock; initialized to false
Pi can enter critical section iff waiting[i] == false or key == false
do {

waiting[i] = TRUE;
key = TRUE;
while (waiting[i] && key)

key = TestAndSet (&lock);

waiting[i] = FALSE;
// critical section
j = (i + 1) % n;
while ((j != i) && !waiting[j])

j = (j + 1) % n;

if (j == i)
lock = FALSE;

else
waiting[j] = FALSE;

// remainder section

} while (TRUE);

page 809/16/15 CSE 30341: Operating Systems Principles

Classic synchronization problems

 Bounded buffer problem
 Readers-writer problem
 Dining-philosophers problem
 The Sleeping Barber problem

page 909/16/15 CSE 30341: Operating Systems Principles

Bounded buffer problem

 N element buffer, producer and consumers work
with this buffer

 Consumers cannot proceed till producer produced
something

 Producer cannot proceed if buffer == N

page 1009/16/15 CSE 30341: Operating Systems Principles

Reader-writer problem

 Shared database, any number of readers can
concurrently read content. Only one writer can
write at any one time (with exclusive access)

 Variations:
 No reader will be kept waiting unless a writer has already

received exclusive write permissions
 Once a writer is ready, it gets exclusive permission as

soon as possible. Once a writer is waiting, no further
reads are allowed

page 1109/16/15 CSE 30341: Operating Systems Principles

Dining philosopher’s problem

 five philosophers think for some time and then eat
 Philosophers can only eat if they have both their left and

right chopsticks/forks/ at the same time

page 1209/16/15 CSE 30341: Operating Systems Principles

The Sleeping Barber Problem

 A barbershop consists of a waiting room with N
chairs, and the barber room containing the barber
chair. If there are no customers to be served the
barber goes to sleep. If a customer enters the
barbershop and all chairs are busy, then the
customer leaves the shop. If the barber is busy,
then the customer sits in one of the available free
chairs. If the barber is asleep, the customer wakes
the barber up.

page 1309/16/15 CSE 30341: Operating Systems Principles

Deadlock and starvation

 Deadlock: processes waiting indefinitely with no
chance of making progress

 Starvation: a process waits for a long time to make
progress

page 1409/16/15 CSE 30341: Operating Systems Principles

Semaphore synchronization primitive

 Test And Set are hard to program for end users
 Introduce a simple function called semaphore:

 Semaphore is an integer, S
 Only legal operations on S are:

 Wait() [atomic] - if S > 0, decrement S else loop
 Signal() [atomic] - increment S

 wait (S) {
 while S <= 0

 ; // no-op
 S--;
 }
 signal (S) {
 S++;
 }
 Counting (S: is unrestricted), binary (mutex lock) (S: 0, 1)

page 1509/16/15 CSE 30341: Operating Systems Principles

Semaphore usage example

 Assume synch is initialized to 0
 P2:

Wait(synch);

Statements2;

 P1:
Statements1;

signal(synch);

page 1609/16/15 CSE 30341: Operating Systems Principles

Monitors

 A high-level abstraction that provides a convenient and
effective mechanism for process synchronization

 Only one process may be active within the monitor at a time
monitor monitor-name
{
// shared variable declarations
procedure P1 (…) { …. }

…
procedure Pn (…) {……}
 Initialization code (….) { … }

…
}
}

 In Java, declaring a method synchronized to get monitor like
behavior
 What happens to shared variables which are not protected by

this monitor?

page 1709/16/15 CSE 30341: Operating Systems Principles

Condition Variables

 condition x, y;

 Two operations on a condition variable:
 x.wait () – a process that invokes the operation is

 suspended.
 x.signal () – resumes one of processes (if any) that

 invoked x.wait ()

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

