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Distributed systems 

 Virtually all large computer-based systems 

are now distributed systems. 

 Processing is distributed over several computers 

rather than confined to a single machine. 

 Appears to the user as a single, coherent system 

(more or less...). 
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Distributed system characteristics / 

advantages 

 Resource sharing (hardware and software) 

 Openness (standard protocols allow equipment and 

software from different vendors to be combined) 

 Concurrency (parallel processing to enhance 

performance)  

 Scalability (increased throughput by adding new 

resources up to capacity of network) 

 Fault tolerance (potential to continue in operation 

after a fault has occurred) 
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Distributed systems issues 

 Distributed systems are more complex than 

systems that run on a single processor. 

 Complexity arises because different parts of the 

system are independently managed as is the 

network. 

 There is generally no single authority in charge of 

the system so top-down control is impossible. 
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Design issues 

 Transparency: To what extent should the 

distributed system appear to the user as a single 

system?  

 Openness: Should a system be designed using 

standard protocols that support interoperability? 

 Scalability: How can the system be constructed 

so that it is scalable? 

(cont’d) 
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Design issues (cont’d) 

 Security: How can usable security policies be 

defined and implemented? 

 Quality of service: How should the quality of 

service  be specified? 

 Failure management: How can system failures 

be detected, contained, and repaired?  
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Transparency 

 Ideally, users should not be aware that a system is 

distributed and services should be independent of 

how they are distributed. 

 In practice, this is impossible because parts of the 

system are independently managed and because of 

network delays. (It’s often better to make users aware of 

distribution so that they can cope with problems.) 

 To achieve transparency, resources should be 

abstracted and addressed logically rather than 

physically. Middleware maps logical to physical 

resources. 
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Openness 

 Open distributed systems are systems that are 

built according to generally accepted standards.  

 Components from any supplier developed in any 

programming language can be integrated into the 

system and can inter-operate with one another. 

 Web service standards for service-oriented 

architectures were developed to be open 

standards.  
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Scalability 

 The ability of a system to deliver a high quality 

service as demands on the system increase... 

• Size: …by adding more resources to cope with an 

increasing numbers of users. 

• Distribution: …by geographically dispersing components 

without degrading performance. 

• Manageability: …by effectively managing a system as it 

increases in size, even if its components are located in 

independent organizations. 

 There is a distinction between scaling-up and scaling-

out... 
(cont’d) 
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Scaling-up vs. scaling-out 

 Scaling-up means replacing resources with more 

powerful ones. 

 Scaling-out means adding additional resources 

 Scaling-out is often more cost effective, but 

usually requires that the system support 

concurrent processing. 
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Security 

 The number of ways that distributed systems may 

be attacked is significantly greater than that for 

centralized systems.  

 If a part of the system is compromised then the 

attacker may be able to use this as a “back door” 

into other parts of the system.  

 Difficulties can arise when different organizations 

own parts of the system. Security policies and 

mechanisms may be incompatible.  

 (cont’d) 
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Types of attack to defend against 

 Interception of communications between parts of the 

system resulting in a loss of confidentiality. 

 Interruption of services, e.g., a denial of service 

attack whereby a node is flooded with spurious 

service requests so that it cannot deal with valid 

ones. 

 Modification of data or services in the system by an 

attacker. 

 Fabrication, e.g., of a false password entry that can 

be used to gain access to a system. 
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Quality of service (QoS) 

 Reflects a system’s ability to deliver services 

dependably and with a response time and 

throughput that is acceptable to users.  

 QoS is particularly critical when a system deals 

with time-critical data such as audio or video 

streams (which could become so degraded that it 

is impossible to understand).  
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Failure management 

 Since failures are inevitable, distributed systems 

must be designed to be resilient... 

 “You know that you have a distributed system when the 

crash of a system that you’ve never heard of stops you 

getting any work done.”  

 Distributed systems should include mechanisms 

for discovering failed components, continuing to 

deliver as many services as possible and, where 

possible, automatically recovering from failures.  
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Models of component interaction 

 There are two types of interaction between 

components in a distributed system: 

• Procedural interaction, where one computer calls 

on a known service offered by another computer and 

waits for a response. (synchronous) 

• Message-based interaction, involves the computer 

sending information about what is required to another 

computer. There is no necessity to wait for a 

response. (non-synchronous) 
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Procedural interaction between a diner and 

a waiter via synchronous procedure calls 
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<starter> 
 <dish name = “soup”   type = “tomato” /> 
 <dish name = “soup”   type = “fish” /> 
 <dish name = “pigeon salad” /> 
</starter> 
<main course> 
 <dish name = “steak”  type = “sirloin”  cooking = “medium” /> 
 <dish name = “steak”  type = “fillet”  cooking = “rare” /> 
 <dish name = “sea bass”> 
</main course> 
<accompaniment> 
 <dish name = “french fries”  portions = “2” /> 
  <dish name = “salad”  portions = “1” /> 
</accompaniment> 

Message-based interaction between a 

waiter and the kitchen via XML 
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Procedural (synchronous) Interaction 

 Implemented by Remote Procedure Calls (RPC’s). 

 One component calls another (via a “stub”) as if it 

were a local procedure or method. 

 Middleware intercepts the call and passes it to the 

remote component which carries out the required 

computation and returns the result. 

 A problem is that both components need to be 

available at the time of the communication and must 

know how to refer to each other.  
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Message-based (asynchronous) 

Interaction 

 Normally involves one component creating a 

message that details the services required of another. 

 Message is sent via middleware to the receiving 

component which parses the message, carries out the 

computations, and (possibly) creates a return 

message with the required results.   

 Messages are queued until the receiver is available. 

Components need NOT refer to each other; middle-

ware ensures that messages are passed to the 

appropriate component. 
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Middleware 

 The components in a distributed system may be 

implemented in different programming languages 

and may execute on different processors. 

 Models of data, information representation, and 

protocols for communication may all be different.  

 Middleware is software that can manage these 

diverse components, and ensure that they can 

communicate and exchange data. 

 Examples include: CORBA, DCOM, .NET  
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Middleware in a distributed system 
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Types of middleware support 

 Interaction support: coordinates interactions 

between different components in the system. 

• Provides location transparency whereby it isn’t 

necessary for components to know the physical 

locations of other components.  

 Common services: provides services that may be 

required by different components regardless of their 

functionality (i.e., security, notification, transaction 

management, etc.). 

• Supports inter-operability and service consistency. 
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Client-server computing 

 Distributed systems that are accessed over the 

Internet are often organized as client-server (C/S) 

systems.  

 The user interacts with a program running on a local 

computer (e.g., a web browser or phone-based 

application) which interacts with another program 

running on a remote computer (e.g., a web server).  

 The remote computer provides services, such as 

access to web pages, which are available to clients.  
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Processes in a client-server system 
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Mapping of client and server 

processes to networked computers 
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Layered architectural model for 

client-server applications 
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Distributed system architectural 

patterns 

 Master-slave: used in real-time systems for which guaranteed 

interaction response times are required. 

 Two-tier client-server: used for simple client-server systems, 

and where the system is centralized for security reasons.  

 Multi-tier client-server: used when there is a high volume of 

transactions to be processed by the server. 

 Distributed component: used when resources from different 

systems and databases need to be combined, or as an 

implementation model for multi-tier client-server systems. 

 Peer-to-peer: used when clients exchange locally stored 

information and the role of the server is to introduce clients to 

each other. 
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Master-slave architectures 

 Commonly used in real-time systems with separate 

processors associated with data acquisition, data 

processing, and computation and actuator 

management. 

 A “Master” process is usually responsible for 

computation, coordination, and communications; it 

controls the “slave” processes.  

 “Slave” processes are dedicated to specific actions, 

e.g., the acquisition of data from an array of sensors. 
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A traffic management system with 

a master-slave architecture 
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Distributed system architectural 

patterns 

 Master-slave: used in real-time systems for which guaranteed 

interaction response times are required. 

 Two-tier client-server: used for simple client-server systems, 

and where the system is centralized for security reasons.  

 Multi-tier client-server: used when there is a high volume of 

transactions to be processed by the server. 

 Distributed component: used when resources from different 

systems and databases need to be combined, or as an 

implementation model for multi-tier client-server systems. 

 Peer-to-peer: used when clients exchange locally stored 

information and the role of the server is to introduce clients to 

each other. 
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Two-tier C/S architecture 

 System is implemented as a single logical server 

plus some number of clients that use that server.  

• Thin-client model: presentation layer is implemented 

on the client; all other layers (data management, 

application processing and database) are on the 

server.  

• Fat-client model: some or all application processing is 

implemented on the client; data management and 

database functions are on the server.  
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Thin- and fat-C/S architectures 
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Thin-client model 

 Often used when centralized legacy systems 
evolve to a C/S architecture; a graphical 
interface is implemented on clients and the 
legacy system acts as a server. 

 Disadvantage: places a heavy processing load 
on both the server and the network. 
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Fat-client model 

 More processing is delegated to the client. 

 Most suitable for new C/S systems where client 
capabilities are known in advance. 

 System management is more complex. When 
application functionality changes, updates are 
required on each client. 
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A fat-client C/S architecture for an 

ATM system 
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Distributed system architectural 

patterns 

 Master-slave: used in real-time systems for which guaranteed 

interaction response times are required. 

 Two-tier client-server: used for simple client-server systems, 

and where the system is centralized for security reasons.  

 Multi-tier client-server: used when there is a high volume of 

transactions to be processed by the server. 

 Distributed component: used when resources from different 

systems and databases need to be combined, or as an 

implementation model for multi-tier client-server systems. 

 Peer-to-peer: used when clients exchange locally stored 

information and the role of the server is to introduce clients to 

each other. 



          Chapter 18                                                         Distributed Software Engineering                                                      Slide  42 

Multi-tier C/S architecture 

 Each layer may execute on a separate processor. 

 Allows for: 

• better performance and scalability than the thin-client, 
approach, and is 

• simpler to manage than a fat-client approach.  (Why?) 
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Three-tier architecture for an  internet 

banking system 
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Use of C/S architectural patterns 

Architecture Applications 

Two-tier client–server 

architecture with thin clients 

Legacy system applications that are used when 

separating application processing and data 

management is impractical. Clients may access these 

as services, as discussed in Section 18.4. 

Computationally intensive applications such as 

compilers with little or no data management. 

Data-intensive applications (browsing and querying) 

with non-intensive application processing. Browsing 

the Web is the most common example of a situation 

where this architecture is used. 

(cont’d) 
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Use of C/S architectural patterns 

Architecture Applications 

Two-tier client-server 

architecture with fat clients 

Applications where application processing is provided 

by off-the-shelf software (e.g., Microsoft Excel) on the 

client. 

Applications where computationally intensive 

processing of data (e.g., data visualization) is 

required. 

Mobile applications where internet connectivity 

cannot be guaranteed. Some local processing using 

cached information from the database is therefore 

possible. 
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Use of C/S architectural patterns 

Architecture Applications 

Multi-tier client–server 

architecture 

Large-scale applications with hundreds or thousands of 

clients. 

Applications where both the data and the application 

are volatile.  

Applications where data from multiple sources are 

integrated. 



          Chapter 18                                                         Distributed Software Engineering                                                      Slide  47 

Distributed system architectural 

patterns 

 Master-slave: used in real-time systems for which guaranteed 

interaction response times are required. 

 Two-tier client-server: used for simple client-server systems, 

and where the system is centralized for security reasons.  

 Multi-tier client-server: used when there is a high volume of 

transactions to be processed by the server. 

 Distributed component: used when resources from different 

systems and databases need to be combined, or as an 

implementation model for multi-tier client-server systems. 

 Peer-to-peer: used when clients exchange locally stored 

information and the role of the server is to introduce clients to 

each other. 
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Distributed component architectures 

 System is designed as a set of services, without 
attempting to allocate these services to layers in 
the system. 

 Each service (or group of related services) is 
implemented as a separate component or object. 

 Components communicate via middleware using 
remote procedure or method calls. 
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Generic distributed component 

architecture 
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A distributed component architecture 

of a DATA MINING SYSTEM 
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Advantages of distributed 

component architectures 

 Allows developers to delay decisions on where 

and how services should be provided. (Service-

providing components may execute on any network node.) 

 Very open architecture – new resources can be 

added as required.  

 System is dynamically reconfigurable – 

components can migrate across the network as 

required. (Thus improving performance.) 

 Therefore: flexible and scalable. 
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Disadvantages of distributed 

component architectures 

 Less intuitive/natural than C/S:  more difficult to 

visualize, understand, and design. 

 Competing middleware standards: vendors, such 

as Microsoft and Sun, have developed different, 

incompatible middleware systems. 

____________  

 As a result, service-oriented architectures (SOA’s) 

are replacing distributed component architectures 

in many situations.  
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Distributed system architectural 

patterns 

 Master-slave: used in real-time systems for which guaranteed 

interaction response times are required. 

 Two-tier client-server: used for simple client-server systems, 

and where the system is centralized for security reasons.  

 Multi-tier client-server: used when there is a high volume of 

transactions to be processed by the server. 

 Distributed component: used when resources from different 

systems and databases need to be combined, or as an 

implementation model for multi-tier client-server systems. 

 Peer-to-peer: used when clients exchange locally stored 

information and the role of the server is to introduce clients to 

each other. 
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Peer-to-peer (p2p) architectures 

 Decentralized systems utilize the power and 
storage of a large number of networked 
computers running the same application. 

 Computations may therefore be carried out by 
any node in the network. 

 Most systems have been personal in nature (e.g., 
file sharing on PCs), but the number of business 
and scientific applications is increasing. 
(Folding@home, SETI@home, VOIP, etc.) 
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Appropriate uses of p2p 

1. Computationally intensive applications where 

processing can be efficiently distributed among 

a large number of networked computers that 

need not communicate with one another.   

(E.g., Folding@home) 

2. Applications where processing involves a large 

number of networked computers exchanging 

data that need not be centrally stored or 

managed. (E.g., file sharing) 
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A decentralized p2p architecture 
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A “semi-centralized” p2p architecture 
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P2p problems 

 The major concerns that have inhibited p2p use 

are security and trust. 

 When p2p nodes interact with one another, any 

resources could potentially be accessed. 

 Problems may also occur if peers deliberately 

behave in a malicious way. 
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Software as a Service (SaaS) 

 Involves hosting software remotely on servers (“the cloud”) 

with access provided over the Internet via web browsers. 

 The server maintains user data and state during a trans-

action session. 

 Applications are owned and managed by a software pro-

vider rather than users. 

 Users may pay for access according to the amount of use, 

or through an annual or monthly subscription.  

 If free, users are exposed to advertisements which fund 

the software service. 
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Differences between SaaS and “Service-

oriented architecture” (SOA) 

 SOA (Chap. 19) is an implementation technology 

for structuring a system as a set of separate, 

stateless services. 

 Services may be owned and managed by multiple 

providers and may be distributed. 

 Existing services may be composed and configured 

to create new composite services and applications. 

 The basis for service composition is often a 

workflow. 
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Differences between SaaS and “Service-

oriented architecture” (SOA)  (cont’d) 

 Example SOA for a “Vacation Package” workflow: 
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Differences between SaaS and “Service-

oriented architecture” (SOA)  (cont’d) 

 Individual SOA transactions are typically “brief,” 

whereby a service is called, does something, and 

returns a result. 

 SaaS transactions, in contrast, are usually “long,” 

e.g., editing a document. 

 

(This is a very simplistic generalization – it is not a 

reliable discriminator!) 
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Differences between SaaS and “Service-

oriented architecture” (SOA)  (cont’d) 

 In summary: 

• SaaS is simply a general software delivery method 

whereby a software system is hosted remotely on a 

provider’s server (a “cloud”) – e.g., web-based e-mail. 

• SOA is a specific implementation strategy for 

designing and building software products through 

the composition of existing capabilities and services. 

• Thus, delivering tax capabilities over the web is 

SaaS, while enabling a tax application to integrate 

with IRS services for tax form checking and e-filing is 

SOA. 
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Implementation considerations for SaaS 

 Service configuration: How do you configure the 

software for the specific requirements of different 

users/organizations? 

 Multi-tenancy: How do you give users the impression 

that they are working with their own copy of the 

system while, at the same time, making efficient use of 

system resources?  

 Scalability: How do you design the system so that it 

can be scaled to accommodate an unpredictably large 

number of users? 



          Chapter 18                                                         Distributed Software Engineering                                                      Slide  66 

Implementation considerations for SaaS 

 Service configuration: How do you configure the 

software for the specific requirements of different 

users/organizations? 

 Multi-tenancy: How do you give users the impression 

that they are working with their own copy of the 

system while, at the same time, making efficient use of 

system resources?  

 Scalability: How do you design the system so that it 

can be scaled to accommodate an unpredictably large 

number of users? 



          Chapter 18                                                         Distributed Software Engineering                                                      Slide  67 

SaaS service configuration may support: 

 Branding:  users can be presented with an interface 

that reflects their own organization. 

 Business rules and workflows: rules that govern the use 

of the service and its data can be organization specific. 

 Database extensions: each organization can define 

extensions to the generic service data model that meet 

its specific needs. 

 Access control: organizations can create individual 

accounts for their staff and define the resources and 

functions that are accessible to each of them. 
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Configuration of a software system 

offered as a service 

configurations for 

different organizations 



          Chapter 18                                                         Distributed Software Engineering                                                      Slide  69 

Implementation considerations for SaaS 

 Service configuration: How do you configure the 

software for the specific requirements of different 

users/organizations? 

 Multi-tenancy: How do you give users the impression 

that they are working with their own copy of the 

system while, at the same time, making efficient use of 

system resources?  

 Scalability: How do you design the system so that it 

can be scaled to accommodate an unpredictably large 

number of users? 



          Chapter 18                                                         Distributed Software Engineering                                                      Slide  70 

Multi-tenancy 

 Multi-tenancy involves defining a system 

architecture that: 

1. allows many different users to access and efficiently 

share system resources, and 

2. gives each of those users the impression that he is 

the sole user of the system. 

 This requires designing the system so that there 

is an absolute separation between the system 

functionality and the user data and state . 
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Tenant identifiers in a multi-tenant 

database 
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General guidelines for achieving 

scalability 

 Develop applications where components are 

implemented as simple, stateless services that 

can run on any server. 

 Design the system using message-based (non-

synchronous) interaction so that the application 

does not have to wait for the result of an inter-

action (such as a read request). 

(cont’d) 
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General guidelines for achieving 

scalability (cont’d) 

 Manage resources such as network and 

database connections as a pool so that no single 

server is likely to run out of resources. 

 Design your database to allow fine-grain 

locking. That is, do not lock out whole records 

when only part of a record is in use. 



          Chapter 18                                                         Distributed Software Engineering                                                      Slide  75 

Key points 

 Important benefits of distributed systems: 

they can be scaled to cope with increasing 

demand, they can continue to provide user 

services if parts of the system fail, and they 

enable resources to be shared. 

 Issues to be considered in the design of dis-

tributed systems:  transparency, openness, 

scalability, security, quality of service and failure 

management. 

 (cont’d) 
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Key points (cont’d) 

 Client-server systems are structured into 

layers, with the presentation layer implemented 

on a client computer. Servers provide data 

management, application, and database services. 

 Client-server systems may have several tiers, 

with different layers of the system distributed to 

different computers.  

 

(cont’d) 
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Key points (cont’d) 

 Architectural patterns for distributed systems 

include:  master-slave architectures, two-tier and 

multi-tier C/S architectures, distributed component 

architectures, and peer-to-peer architectures. 

 Distributed component systems are designed 
as a set of services, without attempting to allocate 
these services to layers. Middleware handles 
component communication. 

(cont’d) 
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Key points (cont’d) 

 Peer-to-peer architectures support 

decentralized systems that utilize the power and 

storage of a large number of networked 

computers running the same application. 

 Software as a service (SaaS) is a way of 

deploying applications as thin-client C/S systems 

where the software is hosted remotely on servers 

(“the cloud”) and the client is a web browser. 
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