
 Chapter 18 Distributed Software Engineering Slide 1

Chapter 18

Distributed Software Engineering

 Chapter 18 Distributed Software Engineering Slide 2

Topics covered

 Distributed systems characteristics and issues

 Models of component interaction

 Client–server computing

 Architectural patterns for distributed systems

 Software as a service

 Chapter 18 Distributed Software Engineering Slide 3

Distributed systems

 Virtually all large computer-based systems

are now distributed systems.

 Processing is distributed over several computers

rather than confined to a single machine.

 Appears to the user as a single, coherent system

(more or less...).

 Chapter 18 Distributed Software Engineering Slide 4

Distributed system characteristics /

advantages

 Resource sharing (hardware and software)

 Openness (standard protocols allow equipment and

software from different vendors to be combined)

 Concurrency (parallel processing to enhance

performance)

 Scalability (increased throughput by adding new

resources up to capacity of network)

 Fault tolerance (potential to continue in operation

after a fault has occurred)

 Chapter 18 Distributed Software Engineering Slide 5

Distributed systems issues

 Distributed systems are more complex than

systems that run on a single processor.

 Complexity arises because different parts of the

system are independently managed as is the

network.

 There is generally no single authority in charge of

the system so top-down control is impossible.

 Chapter 18 Distributed Software Engineering Slide 6

Design issues

 Transparency: To what extent should the

distributed system appear to the user as a single

system?

 Openness: Should a system be designed using

standard protocols that support interoperability?

 Scalability: How can the system be constructed

so that it is scalable?

(cont’d)

 Chapter 18 Distributed Software Engineering Slide 7

Design issues (cont’d)

 Security: How can usable security policies be

defined and implemented?

 Quality of service: How should the quality of

service be specified?

 Failure management: How can system failures

be detected, contained, and repaired?

 Chapter 18 Distributed Software Engineering Slide 8

Transparency

 Ideally, users should not be aware that a system is

distributed and services should be independent of

how they are distributed.

 In practice, this is impossible because parts of the

system are independently managed and because of

network delays. (It’s often better to make users aware of

distribution so that they can cope with problems.)

 To achieve transparency, resources should be

abstracted and addressed logically rather than

physically. Middleware maps logical to physical

resources.

 Chapter 18 Distributed Software Engineering Slide 9

Openness

 Open distributed systems are systems that are

built according to generally accepted standards.

 Components from any supplier developed in any

programming language can be integrated into the

system and can inter-operate with one another.

 Web service standards for service-oriented

architectures were developed to be open

standards.

 Chapter 18 Distributed Software Engineering Slide 10

Scalability

 The ability of a system to deliver a high quality

service as demands on the system increase...

• Size: …by adding more resources to cope with an

increasing numbers of users.

• Distribution: …by geographically dispersing components

without degrading performance.

• Manageability: …by effectively managing a system as it

increases in size, even if its components are located in

independent organizations.

 There is a distinction between scaling-up and scaling-

out...
(cont’d)

 Chapter 18 Distributed Software Engineering Slide 11

Scaling-up vs. scaling-out

 Scaling-up means replacing resources with more

powerful ones.

 Scaling-out means adding additional resources

 Scaling-out is often more cost effective, but

usually requires that the system support

concurrent processing.

 Chapter 18 Distributed Software Engineering Slide 12

Security

 The number of ways that distributed systems may

be attacked is significantly greater than that for

centralized systems.

 If a part of the system is compromised then the

attacker may be able to use this as a “back door”

into other parts of the system.

 Difficulties can arise when different organizations

own parts of the system. Security policies and

mechanisms may be incompatible.

 (cont’d)

 Chapter 18 Distributed Software Engineering Slide 13

Types of attack to defend against

 Interception of communications between parts of the

system resulting in a loss of confidentiality.

 Interruption of services, e.g., a denial of service

attack whereby a node is flooded with spurious

service requests so that it cannot deal with valid

ones.

 Modification of data or services in the system by an

attacker.

 Fabrication, e.g., of a false password entry that can

be used to gain access to a system.

 Chapter 18 Distributed Software Engineering Slide 14

Quality of service (QoS)

 Reflects a system’s ability to deliver services

dependably and with a response time and

throughput that is acceptable to users.

 QoS is particularly critical when a system deals

with time-critical data such as audio or video

streams (which could become so degraded that it

is impossible to understand).

 Chapter 18 Distributed Software Engineering Slide 15

Failure management

 Since failures are inevitable, distributed systems

must be designed to be resilient...

 “You know that you have a distributed system when the

crash of a system that you’ve never heard of stops you

getting any work done.”

 Distributed systems should include mechanisms

for discovering failed components, continuing to

deliver as many services as possible and, where

possible, automatically recovering from failures.

 Chapter 18 Distributed Software Engineering Slide 16

Topics covered

 Distributed systems characteristics and issues

 Models of component interaction

 Client–server computing

 Architectural patterns for distributed systems

 Software as a service

 Chapter 18 Distributed Software Engineering Slide 17

Models of component interaction

 There are two types of interaction between

components in a distributed system:

• Procedural interaction, where one computer calls

on a known service offered by another computer and

waits for a response. (synchronous)

• Message-based interaction, involves the computer

sending information about what is required to another

computer. There is no necessity to wait for a

response. (non-synchronous)

 Chapter 18 Distributed Software Engineering Slide 18

Procedural interaction between a diner and

a waiter via synchronous procedure calls

 Chapter 18 Distributed Software Engineering Slide 19

<starter>
 <dish name = “soup” type = “tomato” />
 <dish name = “soup” type = “fish” />
 <dish name = “pigeon salad” />
</starter>
<main course>
 <dish name = “steak” type = “sirloin” cooking = “medium” />
 <dish name = “steak” type = “fillet” cooking = “rare” />
 <dish name = “sea bass”>
</main course>
<accompaniment>
 <dish name = “french fries” portions = “2” />
 <dish name = “salad” portions = “1” />
</accompaniment>

Message-based interaction between a

waiter and the kitchen via XML

 Chapter 18 Distributed Software Engineering Slide 20

Procedural (synchronous) Interaction

 Implemented by Remote Procedure Calls (RPC’s).

 One component calls another (via a “stub”) as if it

were a local procedure or method.

 Middleware intercepts the call and passes it to the

remote component which carries out the required

computation and returns the result.

 A problem is that both components need to be

available at the time of the communication and must

know how to refer to each other.

 Chapter 18 Distributed Software Engineering Slide 21

Message-based (asynchronous)

Interaction

 Normally involves one component creating a

message that details the services required of another.

 Message is sent via middleware to the receiving

component which parses the message, carries out the

computations, and (possibly) creates a return

message with the required results.

 Messages are queued until the receiver is available.

Components need NOT refer to each other; middle-

ware ensures that messages are passed to the

appropriate component.

 Chapter 18 Distributed Software Engineering Slide 22

Middleware

 The components in a distributed system may be

implemented in different programming languages

and may execute on different processors.

 Models of data, information representation, and

protocols for communication may all be different.

 Middleware is software that can manage these

diverse components, and ensure that they can

communicate and exchange data.

 Examples include: CORBA, DCOM, .NET

 Chapter 18 Distributed Software Engineering Slide 23

Middleware in a distributed system

 Chapter 18 Distributed Software Engineering Slide 24

Types of middleware support

 Interaction support: coordinates interactions

between different components in the system.

• Provides location transparency whereby it isn’t

necessary for components to know the physical

locations of other components.

 Common services: provides services that may be

required by different components regardless of their

functionality (i.e., security, notification, transaction

management, etc.).

• Supports inter-operability and service consistency.

 Chapter 18 Distributed Software Engineering Slide 25

Topics covered

 Distributed systems characteristics and issues

 Models of component interaction

 Client–server computing

 Architectural patterns for distributed systems

 Software as a service

 Chapter 18 Distributed Software Engineering Slide 26

Client-server computing

 Distributed systems that are accessed over the

Internet are often organized as client-server (C/S)

systems.

 The user interacts with a program running on a local

computer (e.g., a web browser or phone-based

application) which interacts with another program

running on a remote computer (e.g., a web server).

 The remote computer provides services, such as

access to web pages, which are available to clients.

 Chapter 18 Distributed Software Engineering Slide 27

Processes in a client-server system

s1

s2 s3

s4
c1

c2 c3 c4

c5

c6
c7 c8

c9

c10

c11

c12

Client process

Server process

 Chapter 18 Distributed Software Engineering Slide 28

Mapping of client and server

processes to networked computers

Network

SC1SC2

CC1 CC2 CC3

CC5 CC6CC4

Server
computer

Client
computer

s1, s2 s3, s4

c5, c6, c7

c1 c2 c3, c4

c8, c9 c10, c11, c12

 Chapter 18 Distributed Software Engineering Slide 29

Layered architectural model for

client-server applications

 Chapter 18 Distributed Software Engineering Slide 30

Topics covered

 Distributed systems characteristics and issues

 Models of component interaction

 Client–server computing

 Architectural patterns for distributed systems

 Software as a service

 Chapter 18 Distributed Software Engineering Slide 31

Distributed system architectural

patterns

 Master-slave: used in real-time systems for which guaranteed

interaction response times are required.

 Two-tier client-server: used for simple client-server systems,

and where the system is centralized for security reasons.

 Multi-tier client-server: used when there is a high volume of

transactions to be processed by the server.

 Distributed component: used when resources from different

systems and databases need to be combined, or as an

implementation model for multi-tier client-server systems.

 Peer-to-peer: used when clients exchange locally stored

information and the role of the server is to introduce clients to

each other.

 Chapter 18 Distributed Software Engineering Slide 32

Distributed system architectural

patterns

 Master-slave: used in real-time systems for which guaranteed

interaction response times are required.

 Two-tier client-server: used for simple client-server systems,

and where the system is centralized for security reasons.

 Multi-tier client-server: used when there is a high volume of

transactions to be processed by the server.

 Distributed component: used when resources from different

systems and databases need to be combined, or as an

implementation model for multi-tier client-server systems.

 Peer-to-peer: used when clients exchange locally stored

information and the role of the server is to introduce clients to

each other.

 Chapter 18 Distributed Software Engineering Slide 33

Master-slave architectures

 Commonly used in real-time systems with separate

processors associated with data acquisition, data

processing, and computation and actuator

management.

 A “Master” process is usually responsible for

computation, coordination, and communications; it

controls the “slave” processes.

 “Slave” processes are dedicated to specific actions,

e.g., the acquisition of data from an array of sensors.

 Chapter 18 Distributed Software Engineering Slide 34

A traffic management system with

a master-slave architecture

Traffic lights

Light
control
process

Traffic light control
processor

Traffic flow
processor

Operator consoles
Traffic flow sensors

and cameras

Sensor
processor

Sensor
control
process

Display
process

Control room

processor

Slave Slave Master

Coordination

and Display

Process

 Chapter 18 Distributed Software Engineering Slide 35

Distributed system architectural

patterns

 Master-slave: used in real-time systems for which guaranteed

interaction response times are required.

 Two-tier client-server: used for simple client-server systems,

and where the system is centralized for security reasons.

 Multi-tier client-server: used when there is a high volume of

transactions to be processed by the server.

 Distributed component: used when resources from different

systems and databases need to be combined, or as an

implementation model for multi-tier client-server systems.

 Peer-to-peer: used when clients exchange locally stored

information and the role of the server is to introduce clients to

each other.

 Chapter 18 Distributed Software Engineering Slide 36

Two-tier C/S architecture

 System is implemented as a single logical server

plus some number of clients that use that server.

• Thin-client model: presentation layer is implemented

on the client; all other layers (data management,

application processing and database) are on the

server.

• Fat-client model: some or all application processing is

implemented on the client; data management and

database functions are on the server.

 Chapter 18 Distributed Software Engineering Slide 37

Thin- and fat-C/S architectures

 Chapter 18 Distributed Software Engineering Slide 38

Thin-client model

 Often used when centralized legacy systems
evolve to a C/S architecture; a graphical
interface is implemented on clients and the
legacy system acts as a server.

 Disadvantage: places a heavy processing load
on both the server and the network.

 Chapter 18 Distributed Software Engineering Slide 39

Fat-client model

 More processing is delegated to the client.

 Most suitable for new C/S systems where client
capabilities are known in advance.

 System management is more complex. When
application functionality changes, updates are
required on each client.

 Chapter 18 Distributed Software Engineering Slide 40

A fat-client C/S architecture for an

ATM system

Account server

Customer
account
database

Tele-
processing

monitor

ATM

ATM

ATM

ATM
transaction manager

 Chapter 18 Distributed Software Engineering Slide 41

Distributed system architectural

patterns

 Master-slave: used in real-time systems for which guaranteed

interaction response times are required.

 Two-tier client-server: used for simple client-server systems,

and where the system is centralized for security reasons.

 Multi-tier client-server: used when there is a high volume of

transactions to be processed by the server.

 Distributed component: used when resources from different

systems and databases need to be combined, or as an

implementation model for multi-tier client-server systems.

 Peer-to-peer: used when clients exchange locally stored

information and the role of the server is to introduce clients to

each other.

 Chapter 18 Distributed Software Engineering Slide 42

Multi-tier C/S architecture

 Each layer may execute on a separate processor.

 Allows for:

• better performance and scalability than the thin-client,
approach, and is

• simpler to manage than a fat-client approach. (Why?)

 Chapter 18 Distributed Software Engineering Slide 43

Three-tier architecture for an internet

banking system

Database server

Customer
account
database

Web server

Client

Client

Client

Client

Account service
provision

SQL

SQL query

HTTP interaction

Tier 1:

Presentation

Tier 2:

Application

processing

and data

management

Tier 3: Database

processing

 Chapter 18 Distributed Software Engineering Slide 44

Use of C/S architectural patterns

Architecture Applications

Two-tier client–server

architecture with thin clients

Legacy system applications that are used when

separating application processing and data

management is impractical. Clients may access these

as services, as discussed in Section 18.4.

Computationally intensive applications such as

compilers with little or no data management.

Data-intensive applications (browsing and querying)

with non-intensive application processing. Browsing

the Web is the most common example of a situation

where this architecture is used.

(cont’d)

 Chapter 18 Distributed Software Engineering Slide 45

Use of C/S architectural patterns

Architecture Applications

Two-tier client-server

architecture with fat clients

Applications where application processing is provided

by off-the-shelf software (e.g., Microsoft Excel) on the

client.

Applications where computationally intensive

processing of data (e.g., data visualization) is

required.

Mobile applications where internet connectivity

cannot be guaranteed. Some local processing using

cached information from the database is therefore

possible.

 Chapter 18 Distributed Software Engineering Slide 46

Use of C/S architectural patterns

Architecture Applications

Multi-tier client–server

architecture

Large-scale applications with hundreds or thousands of

clients.

Applications where both the data and the application

are volatile.

Applications where data from multiple sources are

integrated.

 Chapter 18 Distributed Software Engineering Slide 47

Distributed system architectural

patterns

 Master-slave: used in real-time systems for which guaranteed

interaction response times are required.

 Two-tier client-server: used for simple client-server systems,

and where the system is centralized for security reasons.

 Multi-tier client-server: used when there is a high volume of

transactions to be processed by the server.

 Distributed component: used when resources from different

systems and databases need to be combined, or as an

implementation model for multi-tier client-server systems.

 Peer-to-peer: used when clients exchange locally stored

information and the role of the server is to introduce clients to

each other.

 Chapter 18 Distributed Software Engineering Slide 48

Distributed component architectures

 System is designed as a set of services, without
attempting to allocate these services to layers in
the system.

 Each service (or group of related services) is
implemented as a separate component or object.

 Components communicate via middleware using
remote procedure or method calls.

 Chapter 18 Distributed Software Engineering Slide 49

Generic distributed component

architecture

 Chapter 18 Distributed Software Engineering Slide 50

A distributed component architecture

of a DATA MINING SYSTEM

 Chapter 18 Distributed Software Engineering Slide 51

Advantages of distributed

component architectures

 Allows developers to delay decisions on where

and how services should be provided. (Service-

providing components may execute on any network node.)

 Very open architecture – new resources can be

added as required.

 System is dynamically reconfigurable –

components can migrate across the network as

required. (Thus improving performance.)

 Therefore: flexible and scalable.

 Chapter 18 Distributed Software Engineering Slide 52

Disadvantages of distributed

component architectures

 Less intuitive/natural than C/S: more difficult to

visualize, understand, and design.

 Competing middleware standards: vendors, such

as Microsoft and Sun, have developed different,

incompatible middleware systems.

 As a result, service-oriented architectures (SOA’s)

are replacing distributed component architectures

in many situations.

 Chapter 18 Distributed Software Engineering Slide 53

Distributed system architectural

patterns

 Master-slave: used in real-time systems for which guaranteed

interaction response times are required.

 Two-tier client-server: used for simple client-server systems,

and where the system is centralized for security reasons.

 Multi-tier client-server: used when there is a high volume of

transactions to be processed by the server.

 Distributed component: used when resources from different

systems and databases need to be combined, or as an

implementation model for multi-tier client-server systems.

 Peer-to-peer: used when clients exchange locally stored

information and the role of the server is to introduce clients to

each other.

 Chapter 18 Distributed Software Engineering Slide 54

Peer-to-peer (p2p) architectures

 Decentralized systems utilize the power and
storage of a large number of networked
computers running the same application.

 Computations may therefore be carried out by
any node in the network.

 Most systems have been personal in nature (e.g.,
file sharing on PCs), but the number of business
and scientific applications is increasing.
(Folding@home, SETI@home, VOIP, etc.)

 Chapter 18 Distributed Software Engineering Slide 55

Appropriate uses of p2p

1. Computationally intensive applications where

processing can be efficiently distributed among

a large number of networked computers that

need not communicate with one another.

(E.g., Folding@home)

2. Applications where processing involves a large

number of networked computers exchanging

data that need not be centrally stored or

managed. (E.g., file sharing)

 Chapter 18 Distributed Software Engineering Slide 56

A decentralized p2p architecture

 Chapter 18 Distributed Software Engineering Slide 57

A “semi-centralized” p2p architecture

 Chapter 18 Distributed Software Engineering Slide 58

P2p problems

 The major concerns that have inhibited p2p use

are security and trust.

 When p2p nodes interact with one another, any

resources could potentially be accessed.

 Problems may also occur if peers deliberately

behave in a malicious way.

 Chapter 18 Distributed Software Engineering Slide 59

Topics covered

 Distributed systems characteristics and issues

 Models of component interaction

 Client–server computing

 Architectural patterns for distributed systems

 Software as a service

 Chapter 18 Distributed Software Engineering Slide 60

Software as a Service (SaaS)

 Involves hosting software remotely on servers (“the cloud”)

with access provided over the Internet via web browsers.

 The server maintains user data and state during a trans-

action session.

 Applications are owned and managed by a software pro-

vider rather than users.

 Users may pay for access according to the amount of use,

or through an annual or monthly subscription.

 If free, users are exposed to advertisements which fund

the software service.

 Chapter 18 Distributed Software Engineering Slide 61

Differences between SaaS and “Service-

oriented architecture” (SOA)

 SOA (Chap. 19) is an implementation technology

for structuring a system as a set of separate,

stateless services.

 Services may be owned and managed by multiple

providers and may be distributed.

 Existing services may be composed and configured

to create new composite services and applications.

 The basis for service composition is often a

workflow.

 Chapter 18 Distributed Software Engineering Slide 62

Differences between SaaS and “Service-

oriented architecture” (SOA) (cont’d)

 Example SOA for a “Vacation Package” workflow:

 Chapter 18 Distributed Software Engineering Slide 63

Differences between SaaS and “Service-

oriented architecture” (SOA) (cont’d)

 Individual SOA transactions are typically “brief,”

whereby a service is called, does something, and

returns a result.

 SaaS transactions, in contrast, are usually “long,”

e.g., editing a document.

(This is a very simplistic generalization – it is not a

reliable discriminator!)

 Chapter 18 Distributed Software Engineering Slide 64

Differences between SaaS and “Service-

oriented architecture” (SOA) (cont’d)

 In summary:

• SaaS is simply a general software delivery method

whereby a software system is hosted remotely on a

provider’s server (a “cloud”) – e.g., web-based e-mail.

• SOA is a specific implementation strategy for

designing and building software products through

the composition of existing capabilities and services.

• Thus, delivering tax capabilities over the web is

SaaS, while enabling a tax application to integrate

with IRS services for tax form checking and e-filing is

SOA.

 Chapter 18 Distributed Software Engineering Slide 65

Implementation considerations for SaaS

 Service configuration: How do you configure the

software for the specific requirements of different

users/organizations?

 Multi-tenancy: How do you give users the impression

that they are working with their own copy of the

system while, at the same time, making efficient use of

system resources?

 Scalability: How do you design the system so that it

can be scaled to accommodate an unpredictably large

number of users?

 Chapter 18 Distributed Software Engineering Slide 66

Implementation considerations for SaaS

 Service configuration: How do you configure the

software for the specific requirements of different

users/organizations?

 Multi-tenancy: How do you give users the impression

that they are working with their own copy of the

system while, at the same time, making efficient use of

system resources?

 Scalability: How do you design the system so that it

can be scaled to accommodate an unpredictably large

number of users?

 Chapter 18 Distributed Software Engineering Slide 67

SaaS service configuration may support:

 Branding: users can be presented with an interface

that reflects their own organization.

 Business rules and workflows: rules that govern the use

of the service and its data can be organization specific.

 Database extensions: each organization can define

extensions to the generic service data model that meet

its specific needs.

 Access control: organizations can create individual

accounts for their staff and define the resources and

functions that are accessible to each of them.

 Chapter 18 Distributed Software Engineering Slide 68

Configuration of a software system

offered as a service

configurations for

different organizations

 Chapter 18 Distributed Software Engineering Slide 69

Implementation considerations for SaaS

 Service configuration: How do you configure the

software for the specific requirements of different

users/organizations?

 Multi-tenancy: How do you give users the impression

that they are working with their own copy of the

system while, at the same time, making efficient use of

system resources?

 Scalability: How do you design the system so that it

can be scaled to accommodate an unpredictably large

number of users?

 Chapter 18 Distributed Software Engineering Slide 70

Multi-tenancy

 Multi-tenancy involves defining a system

architecture that:

1. allows many different users to access and efficiently

share system resources, and

2. gives each of those users the impression that he is

the sole user of the system.

 This requires designing the system so that there

is an absolute separation between the system

functionality and the user data and state .

 Chapter 18 Distributed Software Engineering Slide 71

Tenant identifiers in a multi-tenant

database

 Chapter 18 Distributed Software Engineering Slide 72

Implementation considerations for SaaS

 Service configuration: How do you configure the

software for the specific requirements of different

users/organizations?

 Multi-tenancy: How do you give users the impression

that they are working with their own copy of the

system while, at the same time, making efficient use of

system resources?

 Scalability: How do you design the system so that it

can be scaled to accommodate an unpredictably large

number of users?

 Chapter 18 Distributed Software Engineering Slide 73

General guidelines for achieving

scalability

 Develop applications where components are

implemented as simple, stateless services that

can run on any server.

 Design the system using message-based (non-

synchronous) interaction so that the application

does not have to wait for the result of an inter-

action (such as a read request).

(cont’d)

 Chapter 18 Distributed Software Engineering Slide 74

General guidelines for achieving

scalability (cont’d)

 Manage resources such as network and

database connections as a pool so that no single

server is likely to run out of resources.

 Design your database to allow fine-grain

locking. That is, do not lock out whole records

when only part of a record is in use.

 Chapter 18 Distributed Software Engineering Slide 75

Key points

 Important benefits of distributed systems:

they can be scaled to cope with increasing

demand, they can continue to provide user

services if parts of the system fail, and they

enable resources to be shared.

 Issues to be considered in the design of dis-

tributed systems: transparency, openness,

scalability, security, quality of service and failure

management.

 (cont’d)

 Chapter 18 Distributed Software Engineering Slide 76

Key points (cont’d)

 Client-server systems are structured into

layers, with the presentation layer implemented

on a client computer. Servers provide data

management, application, and database services.

 Client-server systems may have several tiers,

with different layers of the system distributed to

different computers.

(cont’d)

 Chapter 18 Distributed Software Engineering Slide 77

Key points (cont’d)

 Architectural patterns for distributed systems

include: master-slave architectures, two-tier and

multi-tier C/S architectures, distributed component

architectures, and peer-to-peer architectures.

 Distributed component systems are designed
as a set of services, without attempting to allocate
these services to layers. Middleware handles
component communication.

(cont’d)

 Chapter 18 Distributed Software Engineering Slide 78

Key points (cont’d)

 Peer-to-peer architectures support

decentralized systems that utilize the power and

storage of a large number of networked

computers running the same application.

 Software as a service (SaaS) is a way of

deploying applications as thin-client C/S systems

where the software is hosted remotely on servers

(“the cloud”) and the client is a web browser.

 Chapter 18 Distributed Software Engineering Slide 79

Chapter 18

Distributed Software Engineering

