CS241 Systems Programming
* System Calls and I/O

Tarek Abdelzaher
Vikram Adve

Copyright ©: Nahrstedt, Angrave, Abdelzaher

Copyright ©: Nahrstedt, Angrave, Abdelzaher

iThis lecture

= Goals:

= Get you familiar with necessary basic system & I/
O calls to do programming

= Things covered in this lecture
= Basic file system calls
= I/O calls
= Signals

= Note: we will come back later to discuss the
above things at the concept level

Copyright ©: Nahrstedt, Angrave, Abdelzaher

System Calls versus Function

* Calls?

Copyright ©: Nahrstedt, Angrave, Abdelzaher

System Calls versus Function
Calls

Function Call

Process

Caller and callee are in the same
Process

- Same user

- Same “domain of trust”

Copyright ©: Nahrstedt, Angrave, Abdelzaher

System Calls versus Function
Calls

Function Call System Call

Process

Caller and callee are in the same

Process
- Same user - OS is trusted; user is not.
- Same “domain of trust” - OS has super-privileges; user does not

- Must take measures to prevent abuse 5

Copyright ©: Nahrstedt, Angrave, Abdelzaher

!L System Calls

= System Calls

=« A request to the operating system to perform some
activity

= System calls are expensive

= The system needs to perform many things before
executing a system call
= The computer (hardware) saves its state
= The OS code takes control of the CPU, privileges are updated.
= The OS examines the call parameters
The OS performs the requested function
The OS saves its state (and call results)
The OS returns control of the CPU to the caller 6

Copyright ©: Nahrstedt, Angrave, Abdelzaher

Steps for Making a System Call
(Example: read call)

Address
OxFFFFFFFF _
Return to caller Librar
Trap to the kernel procec)jlure
5| Put code for read in register read
10
4
User space
P Increment SP 11
r Call read
3| Pushid User program
2| Push &buffer calling read
1| Push nbytes
6 9
-
‘ 7
Kernel space) 7 8 | Syscall
(Operating system) Dl % handler
0

Copyright ©: Nahrstedt, Angrave, Abdelzaher

iExampIes of System Calls

= Example:
= getuid() //get the user ID
= fork() //create a child process
= exec() //executing a program
= Don't confuse system calls with /ibc calls
= Differences?
= Is printf() a system call?
= Is rand() a system call?

Copyright ©: Nahrstedt, Angrave, Abdelzaher

System calls vs. libc

Each I/O system call has corresponding procedure calls from
the standard I/0O library.

System calls Library calls

close fclose

fwrite, putchar, printf, fprintf
putc, fputc, puts, fputs

Use man —s 2 Use man —s 3 9

Copyright ©: Nahrstedt, Angrave, Abdelzaher

File System and I/O Related

i System Calls

= A file system: A hierarchical arrangement
of directories.

= In Unix, the root file system starts with "/*

10

Copyright ©: Nahrstedt, Angrave, Abdelzaher

iWhy does the OS control I/0?

o Safety

= The computer must ensure that if my program has a
bug in it, then it doesn't crash or mess up
« the system,
« other programs that may run at the same time or later.

o Fairness
= Make sure other programs have a fair use of device

11

Copyright ©: Nahrstedt, Angrave, Abdelzaher

iSystem Calls for I/O

= There are 5 basic system calls that Unix provides for file I/O
= int open(char *path, int flags [, int mode]); (check man —s 2 open)
=« int close(int fd);

« int read(int fd, char *buf, int size);
« int write(int fd, char *buf, int size);
= Off_t Iseek(int fd, off_t offset, int whence);
= Remember: these are different from regular procedure calls

= Some library calls themselves make a system call
= (e.g. fopen() calls open())

12

Copyright ©: Nahrstedt, Angrave, Abdelzaher

iOpen

= int open(char *path, int flags [, int mode])
pjlakes a request to the operating system to use a
ile.

= The 'path' argument specifies the file you would like to use

= The 'flags' and 'mode' arguments specify how you would
like to use it.

=« If the operating system approves your request, it will
return a file descriptor to you. This is a non-negative
integer. Any future accesses to this file needs to provide
this file descriptor

= If it returns -1, then you have been denied access; check
the value of global variable "errno" to determine why (or
use perror() to print corresponding error message).

13

Copyright ©: Nahrstedt, Angrave, Abdelzaher

Standard Input, Output and

iError

= Now, every process in Unix starts out with three
file descriptors predefined:

= File descriptor 0 is standard input.
= File descriptor 1 is standard output.
= File descriptor 2 is standard error.

= You can read from standard input, using
read(0, ...), and write to standard output using
write(1, ...) or using two library calls
= printf
= scanf

14

Copyright ©: Nahrstedt, Angrave, Abdelzaher

iExampIe 1

#include <fcntl.h>
#include <errno.h>

main(int argc, char** argv) {
int fd;
fd = open("foo.txt", O_RDONLY);
printf("%d\n", fd);
if (fd=-1) {
fprintf (stderr, "Error Number %d\n", errno);
perror("Program");

}
}

15

Copyright ©: Nahrstedt, Angrave, Abdelzaher

iExa mple 1
How to modify the example to

#include <fcntl.h> print the program name before
#include <errno.h> the error message?

extern int errno;

main() {
int fd;
fd = open("foo.txt", O_RDONLY);
printf("%d\n", fd);
if (fd==-1){
printf ("Error Numb
perror("Program");

}
}

%d\n", errno);

16

Copyright ©: Nahrstedt, Angrave, Abdelzaher

Close

= int close(int fd)
Tells the operating system you are done with a file descriptor.

#include <fcntl.h>
main(){
int fd1, fd2;

if((fd1 = open(“foo.txt", O_RDONLY)) < 04
perror(“foo.txt");

exit(1);
i? (close(fd1) < 0) { Why do we need to close a file?
perror(“foo.txt");
exit(1); After close, can you still use the
} file descriptor?
printf("closed the fd's\n"); 17

Copyright ©: Nahrstedt, Angrave, Abdelzaher

read(...)

= int read(int fd, char *buf, int size) tells the operating system
= To read "size" bytes from the file specified by "fd" into the memory
location pointed to by "buf".
« It returns how many bytes were actually read (why?)
= 0: atend of the file
« < size : fewer bytes are read to the buffer (why?)
« == Size : read the specified # of bytes

= Things to be careful about
= buf must point to valid memory not smaller than the specified size
= Otherwise, what could happen?

» fd should be a valid file descriptor returned from open() to perform
read operation
= Otherwise, what could happen?

18

Copyright ©: Nahrstedt, Angrave, Abdelzaher

Example 2

#include <fcntl.h>

main(int argc, char** argv) {
char *c;
int fd, sz;

¢ = (char *) malloc(100 * sizeof(char));

fd = open(“foo.txt", O_RDONLY);
if (fd < 0) { perror("foo.txt"); exit(1); }

sz = read(fd, c, 10);

printf("called read(%d, ¢, 10), which read %d bytes.\n”, fd, sz);
c[sz] = "0

printf("Those bytes are as follows: %s\n", c);

close(fd);

19

Copyright ©: Nahrstedt, Angrave, Abdelzaher

iwrite(...)

= int write(int fd, char *buf, int size)
writes the bytes stored in buf to the file
specified by fd
= It returns the number of bytes actually written,
which is usually “size” unless there is an error

= Things to be careful about
= buf must be at least as long as “size”
= The file must be open for write operations

20

Copyright ©: Nahrstedt, Angrave, Abdelzaher

iExampIe 3

#include <fcntl.h>
main()

{

int fd, sz;

fd = open("out3", O_RDWR | O_CREAT | O_APPEND, 0644),
if (fd < 0) { perror("r1"); exit(1); }

sz = write(fd, "cs241\n", strlen("cs241\n"));

printf("called write(%d, \"cs360\\n\", %d), which returned %d\n",
fd, strlen("cs360\n"), sz);

close(fd);

}

21

Copyright ©: Nahrstedt, Angrave, Abdelzaher

ilseek

All open files have a "file pointer" associated with them to
record the current position for the next file operation

= When file is opened, file pointer points to the beginning of the file

= After reading/write m bytes, the file pointer moves m bytes forward

off_t Iseek(int fd, off_t offset, int whence) moves the
file pointer explicitly
= The 'whence' argument specifies how the seek is to be done
= from the beginning of the file
= from the current value of the pointer, or
= from the end of the file
= The return value is the offset of the pointer after the Iseek

How would you know to include sys/types.h and unistd.h?
= Read "man -s 2 Iseek"

22

Copyright ©: Nahrstedt, Angrave, Abdelzaher

Iseek example

= (char *) malloc(100 * sizeof(char));
fd = open(“foo.txt", O_RDONLY);
if (fd < 0) { perror(’foo.txt"); exit(1); }

sz = read(fd, c, 10);

printf("We have opened foo.txt, and called read(%d, c, 10).\n”, fd);
c[sz] = \0’;

printf(“Those bytes are as follows: %s\n”, c¢);

| = Iseek(fd, 0, SEEK_CUR);
printf(“Iseek(%d, 0, SEEK_CUR) returns the current offset = %d\n\n”, fd, i);

printf(“now, we seek to the beginning of the file and call read(%d, ¢, 10)\n”, fd);
Iseek(fd, 0, SEEK_SET);

sz = read(fd, c, 10);

c[sz] = \O’;

printf("The read returns the following bytes: %s\n", c);

23

