
Copyright ©: Nahrstedt, Angrave, Abdelzaher 1

Tarek Abdelzaher

Vikram Adve

CS241 Systems Programming

System Calls and I/O

Copyright ©: Nahrstedt, Angrave, Abdelzaher

2

This lecture

!! Goals:
!! Get you familiar with necessary basic system & I/

O calls to do programming

!! Things covered in this lecture
!! Basic file system calls

!! I/O calls

!! Signals

!! Note: we will come back later to discuss the
above things at the concept level

Copyright ©: Nahrstedt, Angrave, Abdelzaher

3

System Calls versus Function
Calls?

Copyright ©: Nahrstedt, Angrave, Abdelzaher

4

System Calls versus Function
Calls

fnCall()

Process

Caller and callee are in the same

Process
 - Same user

 - Same “domain of trust”

Function Call

Copyright ©: Nahrstedt, Angrave, Abdelzaher

5

System Calls versus Function
Calls

fnCall()

Process

Caller and callee are in the same

Process
 - Same user

 - Same “domain of trust”

Function Call

sysCall()

Process

System Call

OS

- OS is trusted; user is not.

-! OS has super-privileges; user does not
-! Must take measures to prevent abuse

Copyright ©: Nahrstedt, Angrave, Abdelzaher

6

System Calls

!! System Calls

!! A request to the operating system to perform some
activity

!! System calls are expensive

!! The system needs to perform many things before

executing a system call

!! The computer (hardware) saves its state

!! The OS code takes control of the CPU, privileges are updated.

!! The OS examines the call parameters

!! The OS performs the requested function

!! The OS saves its state (and call results)

!! The OS returns control of the CPU to the caller

Copyright ©: Nahrstedt, Angrave, Abdelzaher

7

Steps for Making a System Call
(Example: read call)

Copyright ©: Nahrstedt, Angrave, Abdelzaher

8

Examples of System Calls

!! Example:

!! getuid() //get the user ID

!! fork() //create a child process

!! exec() //executing a program

!! Don’t confuse system calls with libc calls

!! Differences?

!! Is printf() a system call?

!! Is rand() a system call?

System calls vs. libc

System calls Library calls

open fopen

close fclose

read fread, getchar, scanf, fscanf,
getc, fgetc, gets, fgets

write fwrite, putchar, printf, fprintf
putc, fputc, puts, fputs

lseek fseek

Copyright ©: Nahrstedt, Angrave, Abdelzaher

9 Use man –s 2 Use man –s 3

Each I/O system call has corresponding procedure calls from
the standard I/O library.

Copyright ©: Nahrstedt, Angrave, Abdelzaher

10

File System and I/O Related
System Calls

!! A file system: A hierarchical arrangement
of directories.

!! In Unix, the root file system starts with "/“

Copyright ©: Nahrstedt, Angrave, Abdelzaher

11

Why does the OS control I/O?

"! Safety
!! The computer must ensure that if my program has a

bug in it, then it doesn't crash or mess up
!! the system,

!! other programs that may run at the same time or later.

"! Fairness
!! Make sure other programs have a fair use of device

Copyright ©: Nahrstedt, Angrave, Abdelzaher

12

System Calls for I/O

!! There are 5 basic system calls that Unix provides for file I/O

!! int open(char *path, int flags [, int mode]); (check man –s 2 open)

!! int close(int fd);

!! int read(int fd, char *buf, int size);

!! int write(int fd, char *buf, int size);

!! off_t lseek(int fd, off_t offset, int whence);

!! Remember: these are different from regular procedure calls

!! Some library calls themselves make a system call

!! (e.g. fopen() calls open())

Copyright ©: Nahrstedt, Angrave, Abdelzaher

13

Open

!! int open(char *path, int flags [, int mode])
makes a request to the operating system to use a
file.
!! The 'path' argument specifies the file you would like to use

!! The 'flags' and 'mode' arguments specify how you would
like to use it.

!! If the operating system approves your request, it will
return a file descriptor to you. This is a non-negative
integer. Any future accesses to this file needs to provide
this file descriptor

!! If it returns -1, then you have been denied access; check
the value of global variable "errno" to determine why (or
use perror() to print corresponding error message).

Copyright ©: Nahrstedt, Angrave, Abdelzaher

14

Standard Input, Output and
Error

!! Now, every process in Unix starts out with three
file descriptors predefined:
!! File descriptor 0 is standard input.

!! File descriptor 1 is standard output.

!! File descriptor 2 is standard error.

!! You can read from standard input, using
read(0, ...), and write to standard output using
write(1, ...) or using two library calls
!! printf

!! scanf

Copyright ©: Nahrstedt, Angrave, Abdelzaher

15

Example 1

#include <fcntl.h>
#include <errno.h>

main(int argc, char** argv) {

 int fd;

 fd = open("foo.txt", O_RDONLY);

 printf("%d\n", fd);

 if (fd=-1) {

 fprintf (stderr, "Error Number %d\n", errno);
 perror("Program");

 }

}

Copyright ©: Nahrstedt, Angrave, Abdelzaher

16

Example 1

#include <fcntl.h>
#include <errno.h>

extern int errno;

main() {

 int fd;

 fd = open("foo.txt", O_RDONLY);

 printf("%d\n", fd);

 if (fd==-1) {
 printf ("Error Number %d\n", errno);

 perror("Program");

 }

}

How to modify the example to

print the program name before
the error message?

Copyright ©: Nahrstedt, Angrave, Abdelzaher

17

Close

!! int close(int fd)

 Tells the operating system you are done with a file descriptor.

#include <fcntl.h>

main(){
 int fd1, fd2;

 if((fd1 = open(“foo.txt", O_RDONLY)) < 0){

 perror(”foo.txt");

 exit(1);
 }

 if (close(fd1) < 0) {
 perror(”foo.txt");

 exit(1);

 }
printf("closed the fd's\n");

After close, can you still use the

file descriptor?

Why do we need to close a file?

Copyright ©: Nahrstedt, Angrave, Abdelzaher

18

read(…)

!! int read(int fd, char *buf, int size) tells the operating system
!! To read "size" bytes from the file specified by "fd“ into the memory

location pointed to by "buf".

!! It returns how many bytes were actually read (why?)

!! 0 : at end of the file

!! < size : fewer bytes are read to the buffer (why?)

!! == size : read the specified # of bytes

!! Things to be careful about
!! buf must point to valid memory not smaller than the specified size

!! Otherwise, what could happen?

!! fd should be a valid file descriptor returned from open() to perform
read operation

!! Otherwise, what could happen?

Copyright ©: Nahrstedt, Angrave, Abdelzaher

19

Example 2
#include <fcntl.h>

main(int argc, char** argv) {
 char *c;

 int fd, sz;

 c = (char *) malloc(100 * sizeof(char));

 fd = open(“foo.txt", O_RDONLY);

 if (fd < 0) { perror(”foo.txt"); exit(1); }

 sz = read(fd, c, 10);

 printf("called read(%d, c, 10), which read %d bytes.\n”, fd, sz);
 c[sz] = '\0';

 printf("Those bytes are as follows: %s\n", c);

 close(fd);

}

Copyright ©: Nahrstedt, Angrave, Abdelzaher

20

write(…)

!! int write(int fd, char *buf, int size)
writes the bytes stored in buf to the file
specified by fd
!! It returns the number of bytes actually written,

which is usually “size” unless there is an error

!! Things to be careful about

!! buf must be at least as long as “size”

!! The file must be open for write operations

Copyright ©: Nahrstedt, Angrave, Abdelzaher

21

Example 3

#include <fcntl.h>

main()

{

 int fd, sz;

 fd = open("out3", O_RDWR | O_CREAT | O_APPEND, 0644);

 if (fd < 0) { perror("r1"); exit(1); }

 sz = write(fd, "cs241\n", strlen("cs241\n"));

 printf("called write(%d, \"cs360\\n\", %d), which returned %d\n",

 fd, strlen("cs360\n"), sz);

 close(fd);

}

Copyright ©: Nahrstedt, Angrave, Abdelzaher

22

lseek

!! All open files have a "file pointer" associated with them to
record the current position for the next file operation
!! When file is opened, file pointer points to the beginning of the file

!! After reading/write m bytes, the file pointer moves m bytes forward

!! off_t lseek(int fd, off_t offset, int whence) moves the
file pointer explicitly
!! The 'whence' argument specifies how the seek is to be done

!! from the beginning of the file

!! from the current value of the pointer, or

!! from the end of the file

!! The return value is the offset of the pointer after the lseek

!! How would you know to include sys/types.h and unistd.h?
!! Read "man -s 2 lseek"

Copyright ©: Nahrstedt, Angrave, Abdelzaher

23

lseek example
 c = (char *) malloc(100 * sizeof(char));

 fd = open(“foo.txt", O_RDONLY);
 if (fd < 0) { perror(”foo.txt"); exit(1); }

 sz = read(fd, c, 10);

 printf("We have opened foo.txt, and called read(%d, c, 10).\n”, fd);

 c[sz] = ‘\0’;
 printf(“Those bytes are as follows: %s\n”, c);

 I = lseek(fd, 0, SEEK_CUR);

 printf(“lseek(%d, 0, SEEK_CUR) returns the current offset = %d\n\n”, fd, i);

 printf(“now, we seek to the beginning of the file and call read(%d, c, 10)\n”, fd);

 lseek(fd, 0, SEEK_SET);
 sz = read(fd, c, 10);

 c[sz] = ‘\0’;

 printf("The read returns the following bytes: %s\n", c);
…:

