
1

5-1

Modeling Sequential Circuits and
FSMs with Verilog

Prof. Chien-Nan Liu
TEL: 03-4227151 ext:34534
Email: jimmy@ee.ncu.edu.tw

5-2

Sequential Circuit Design
Typical design procedure
1. Obtain either the state diagram or the state table

from the statement of the problem
2. Reduce the number of states if necessary
3. Assign binary codes to the states
4. Obtain the binary coded state table
5. Choose the type of flip-flop to be used
6. Derive the simplified flip-flop input equations and

output equations from the state table
7. Draw the logic diagram with D flip-flops and

combinational gates according to those equations

2

5-3

Build the State Diagram
Example 4-1:
Implement a circuit that recognizes the occurrence
of the sequence of bits 1101 on X by making Z
equal to 1 when the previous three inputs to the
circuit were 110 and current input is a 1.
Build the state diagram:

5-4

Obtain the State Table

3

5-5

Derive the Equations

5-6

The Final Circuit

4

5-7

Designing with Unused States

Only 5 states are used !!
Unused states are treated as don’t cares.

5-8

State Assignment
State assignment: determine the binary representations
of the states in a circuit
For a circuit with n state registers, there are 2n possible
state assignments
State assignments have large impacts on the resultant
circuit area, performance, …
Many coding methods exist

One-hot: n bits for n states (one-to-one mapping)
Gray code: change only one bit between adjacent states
Minimum length encoding: require (n1/2 + 1) registers
Ad-hoc: determine by experience

Some general guidelines can be referenced

5

5-9

Guidelines for State Assignment
Assignments for two states are adjacent
if they differ in only one variable

010 and 011 are adjacent
010 and 001 are not adjacent

Guideline 1: states which have the
same next state for a given input
could be given adjacent assignments

Guideline 2: states which are the next
states of the same state could be
given adjacent assignments

Guideline 3: states which have the
same output for a given input could
be given adjacent assignments

Guideline 1

Guideline 2

x x

Guideline 3

x/yx/y

5-10

State Assignment Example
Guideline 1: (S0,S1,S3,S5) (S3,S5) (S4,S6) (S0,S2,S4,S6)
Guideline 2: (S1, S2) (S2,S3) (S1,S4) (S2,S5)X2 (S1,S6)X2
Try to fulfill as many of these adjacency conditions as possible

It’s hard to satisfy all those conditions
The conditions that appear more times have higher priority
K-map can help us to check those conditions

Two possible state assignments are demonstrated

6

5-11

Effects of the Guidelines

5-12

Finite State Machine

FSM: Finite State Machine
Sequential circuits with “finite” states
Most sequential circuits can be classified
as FSMs

Two primary categories:
Mealy machine

Outputs depend on current states and inputs

Moore machine
Outputs depend on current states only

7

5-13

FSM Structures (1/3)

Next State Logic
(combinational)

Current State
Register

(sequential)

Output Logic
(combinational)

Mealy
OutputsClock

Inputs

Synchronous
reset

Asynchronous
reset

Mealy

5-14

FSM Structures (2/3)

Next State Logic
(combinational)

Current State
Register

(sequential)

Output Logic
(combinational)Clock

Synchronous
reset

Asynchronous
reset

Inputs

Moore
Outputs

Moore

8

5-15

FSM Structures (3/3)

Next State Logic
(combinational)

Current State
Register

(sequential)

Output Logic
(combinational)

Clock

Inputs

Synchronous
reset

Asynchronous
reset

Output Logic
(combinational) Moore

Outputs

Mealy
Outputs

Mealy/Moore

5-16

Coding for FSM

always@(state) begin
case(state)
stateA: nextstate=stateB;
stateB: nextstate=stateC;
stateC: nextstate=stateD;
stateD: nextstate=stateA;

endcase
end

parameter
stateA=2’b00,
stateB=2’b01,
stateC=2’b10,
stateD=2’b11;

always@(posedge clk)
begin
if (reset) state<=stateA;
else state<=nextstate;
end

Combinational part
Sequential part

state variable

Separate the combination part and the sequential part
Use parameters to define the state variables

initial state

9

5-17

Blocking v.s Non-Blocking

Use non-blocking assignments for
sequential block

Store values until the end of the time slice
Avoid simulation race conditions or ambiguity
of results

Use blocking assignments for
combinational block

Blocking assignments occur immediate in
nature

5-18

Blocking Assignment

always @(posedge clk)
begin
outa=in;
outb=outa;
outc=outb;

end

outa

outb

outc

clk
D Q

in

D Q

D Q

10

5-19

Non-Blocking Assignment

always @(posedge clk)
begin
outa<=in;
outb<=outa;
outc<=outb;

end

outc

clk

in
D Q D Q D Q

always @(posedge clk)
outa=in;

always @(posedge clk)
outb=outa;

always @(posedge clk)
outc=outb;

5-20

always@(posedge clk)
begin

out1 = 3;
end

always@(posedge clk)
begin

out1 = 0;
out1<= 1;
out1 = 2;

end

always@(out1)
begin

out2 = ~out2;
end

0 clk
bxx out1
0 out2
$end

#5
1 clk
b00 out1
b10 out1
b11 out1
1 out2
b01 out1
0 out2

blocking
assignments

non- blocking
assignments

1st
traversal

•

•

•

•

•

•
2nd
traversal

A Time
Unit

Illustration of Execution Order

11

5-21

Example: Sequence Recognizer

Just describe
state-by-state !!

5-22

Various Coding Styles for FSM

There are many different coding styles
can be used to describe a FSM

HDL is a very flexible language

Typical coding styles:
1-process FSM
2-process FSM
3-process (or more) FSM

12

5-23

1-Process FSM
Lump all descriptions into a single process

module counter (clk, rst, load, in, count) ;
input clk, rst, load ;
input [7:0] in ;
output [7:0] count ;
reg [7:0] count ;

always @(posedge clk) begin
if (rst) count = 0 ;
else if (load) count = in ;
else if (count == 255) count = 0 ;
else count = count + 1 ;

end
endmodule

count
0

count
1

count
2

count
255

count
254

…...
256 states 66047 transitions

5-24

2-Process FSM (1/5)

Next State Logic
(combinational)

Current State
Register

(sequential)

Output Logic
(combinational)

Clock

Asynchronous
reset

Inputs

Outputs

structurally partitioned
functionally partitioned

13

5-25

2-Process FSM (2/5)
module FSM_S2 (Clock, Reset, X, Y);

input Clock, Reset, X;
output [2:0] Y;
reg [2:0] Y;
reg [1:0] CS, NS;
parameter ST0 = 0, ST1 = 1, ST2 = 2, ST3 = 3;
always @(X or CS) begin : COMB

case (CS)
ST0 : begin

Y = 1;
NS = ST1;

end
ST1 : begin

Y = 2;
if (X) NS = ST3;
else NS = ST2;

end

Y=4 ST3

Reset

Y=1ST0

Y=2ST1

Y=3ST2

X

2-process,
structurally
partitioned

5-26

2-Process FSM (3/5)

ST2 : begin
Y = 3;
NS = ST3;

end
ST3 : begin

Y = 4;
NS = ST0;

end
default : begin

Y = 1;
NS = ST0;

end
endcase

end

always @(posedge Clock or posedge Reset)
begin : SEQ
if (Reset)

CS <= ST0;
else

CS <= NS;
end

endmodule

14

5-27

2-Process FSM (4/5)
2-process, functionally partitioning

module FSM_F2 (Clock, Reset, X, Y);
input Clock, Reset, X;
output [2:0] Y;
reg [2:0] Y;
reg [1:0] STATE;
parameter [1:0] ST0 = 0, ST1 = 1, ST2 = 2, ST3 = 3;

always @(posedge Clock or posedge Reset)
begin : NEXT_STATE

if (Reset)
STATE <= ST0;

else

5-28

2-Process FSM (5/5)

case (STATE)
ST0 : STATE <= ST1;
ST1 : begin

if (X)
STATE <= ST3;

else
STATE <= ST2;

end
ST2 : STATE <= ST3;
ST3 : STATE <= ST0;

endcase
end

always @(STATE)
begin : OUT

case (STATE)
ST0 : Y = 1;
ST1 : Y = 2;
ST2 : Y = 3;
ST3 : Y = 4;
default : Y = 1;

endcase
end

endmodule

15

5-29

3-Process FSM (1/4)

Next State Logic
(combinational)

Current State
Register

(sequential)

Output Logic
(combinational)

Clock

Asynchronous
reset

Inputs

Outputs

5-30

3-Process FSM (2/4)
3-process, structurally partitioning

module FSM_S3(Clock, Reset, X, Y);
input Clock, Reset, X;
output [2:0] Y;
reg [2:0] Y;
reg [1:0] CS, NS;
parameter [1:0] ST0 = 0, ST1 = 1, ST2 = 2, ST3 = 3;

always @(X or CS)
begin : COMB

NS = ST0;
case (CS)

16

5-31

3-Process FSM (3/4)

ST0 : begin
NS = ST1;

end
ST1 : begin

if (X)
NS = ST3;

else
NS = ST2;

end

ST2 : begin
NS = ST3;
end

ST3 : begin
NS = ST0;

end
endcase

end
// end process COMB

5-32

3-Process FSM (4/4)
always @(posedge Clock

or posedge Reset)
begin : SEQ

if (Reset)
CS <= ST0;

else
CS <= NS;

end

always @(CS)
begin : OUT

case (CS)
ST0 : Y = 1;
ST1 : Y = 2;
ST2 : Y = 3;
ST3 : Y = 4;
default : Y = 1;

endcase
end

endmodule

