
Lab 7.1 : IPC Mechanism using Named Pipe and

Shared Memory

November 14, 2016

Objective : The purpose of this lab is to teach students IPC mechanisms
and syncronization using semaphores.

You should refer to lecture notes IPC mechanism.pdf and complete Lab
6.1 before proceeding with this lab

• Experiments with Semaphores

1. Compile and run read-write-3.c with gcc. and run it. Review read-
write-3.c to be sure you understand how it works.

2. Use the idea of semaphores, as implemented in read-write-3.c, in place
of the spinlocks in lab 6.1 to handle the synchronization of the reader
and writer process from read-write-3.c.

3. With this use of semaphores, explain whether your code in step 11
will work when there are multiple readers or when there are multiple
writers. In each case, if the code would work, explain why. If the
code would not work, give a timing sequence involving the several
readers and/or writers showing what might go wrong.

• Experiments with Multiple Readers and Multiple Writers

1. Compile and run read-write-4.c with gcc. and run it. Review read-
write-4.c to be sure you understand how it works.

2. This program contains a third semaphore, mutex. Explain the pur-
pose of this semaphore. Specifically, if semaphore mutex were omit-
ted, give a timing sequence involving the several readers and/or writ-
ers showing what might go wrong.

3. Program read-write-4.c prevents any reader from working at the same
time as any writer. Assuming that the buffer contains several loca-
tions, however, writing to one buffer location should not interfere
with reading from another. That is, the critical section for readers
need not be considered exactly the same as the critical section for
writers. Remove semaphore mutex and add additional semaphores,
as needed, so that some reader could work concurrently with some
writer (assuming the buffer contained some data but was not full –
so both reading and writing made sense).

1



• A Simple Pipeline Program:

Consider the following problem: A program is to be written to print all
numbers between 1 and 1000 (inclusive) that are not (evenly) divisible by
either 2 or 3.

This problem is to be solved using three processes (P0, P1, P2) and two
one-integer buffers (B0 and B1) as follows:

1. P0 is to generate the integers from 1 to 1000, and place them in B0
one at a time. After placing 1000 in the buffer, P0 places the sentinel
0 in the buffer, and terminates.

2. P1 is to read successive integers from B0. If a value is not divisible by
2, the value is placed in B1. If the value is positive and divisible by 2,
it is ignored. If the value is 0, 0 is placed in B1, and P1 terminates.

3. P2 is to read successive integers from B1. If a value is not divisble
by 3, it is printed. If the value is positive and divisible by 3, it is
ignored. If the value is 0, P2 terminates.

Write a program to implement P0, P1, and P2 as separate processes and
B0 and B1 as separate pieces of shared memory – each the size of just one
integer. Use semaphores to coordinate processing. Access to B0 should
be independent of access to B1; for example, P0 could be writing into B0
while either P1 was writing into B1 or P2 was reading.

2


