
Lab 6.1 : IPC Mechanism using Named Pipe and

Shared Memory

November 7, 2016

Objective :

The purpose of this lab is to teach students to use named Unix pipes and
introduce to System V IPC through shared memory and message queues.You
should refer to Lecture notes on IPC and run all examples before proceeding
with this lab

• Named Pipe

1. Background :
A pair of unrelated processes can use a ’named pipe’ to pass infor-
mation between them. This allows a situation where two processes
started in separate shells can communicate with each other through
a ’named pipe’ on the file system. A named pipe, or FIFO, can
be created using the mkfifo() function. It can be removed (like any
other file on the file system) using the unlink() function. Once a
named pipe file exists, programs can open it like they would other
files and then use the file descriptor obtained to perform regualar file
IO operations on the (read, write, close...).

2. Assignment :
You will write two simple programs pipe reader.c and pipe writer.c
that use a named pipe to communicate. The pipe reader program
will set up a named pipe using mkfifo(), open it read only, and read
strings from it until it recieves the string exit. The writer will open
the named pipe file, read strings from the user and write them to the
named pipe. When the user enters exit, the program will write the
string to the pipe and then exit. Execution should look something
like this (note that you must start the reader first):
reader:
iiita:$ ./pipe reader
Creating named pipe: /tmp/mypipe
Waiting for input...Got it: ’Oh! God’
Waiting for input...Got it: ’OS lab trouble’
Waiting for input...Got it: ’exit’
Exiting

1



writer:
iiita:$ ./pipe writer
Opening named pipe: /tmp/mypipe
Enter Input: Oh! God
Writing buffer to pipe...done
Enter Input: OS lab trouble
Writing buffer to pipe...done
Enter Input: exit
Writing buffer to pipe...done
Exiting

Note : pipe reader and pipe writer need to be executed in sepa-
rate shells at the same time. The reader stops at
emphWaiting for input... until it recieves data from the pipe (the
read completes).

• Shared Memory:

1. Compile read-write-1.c with gcc, and run it a few times. Describe
the output you get, and explain briefly how it is produced.

2. Remove the sleep statement from the child process, rerun read-write-
1.c, and explain the output produced.

3. Restore the sleep statement from the previous step, and remove it
from the parent process. Again, rerun read-write-1.c, and explain
the output produced.

4. Rather than rely upon sleep statements to synchronize the two pro-
cesses, consider the use of spinlocks. In this approach, the parent
will write to shared memory when the memory location contains the
value -1, and the child will read when the memory location is not -1.

– Initialize the shared memory location in main memory to -1 be-
fore the fork operation. (Why must this be done before the
fork?)

– Replace the sleep statement for the child by a spinlock that
checks that the shared memory contains a nonnegative value. At
the end of the child’s loop, the shared memory location should
be reset to -1.

– Remove the sleep statement from the parent at the end of the
loop, and insert a spinlock at the beginning of the loop that
checks that memory is -1. When this condition occurs, the parent
may write the next nonnegative number to shared memory.

5. Then, compile read-write-2.c, run them a few times, and review the
code to be sure you understand how the programs work.

6. Explain whether read-write-2.c will work when there are multiple
readers or when there are multiple writers. In each case, if the code
would work, explain why. If the code would not work, give a timing
sequence involving the several readers and/or writers showing what
might go wrong.

2


