
Mapping of
Applications to Platforms

Peter Marwedel
TU Dortmund, Informatik 12

Germany

2012年 12 月 12 日 These slides use Microsoft clip arts. Microsoft copyright restrictions apply.

©
S

pr
in

ge
r,

20
10

- 2 - p. marwedel,
informatik 12, 2012

TU Dortmund

Structure of this course

2:
Specification

3:
ES-hardware

4: system
software (RTOS,
middleware, …)

8:
Test

5: Evaluation &
validation & (energy,
cost, performance, …)

7: Optimization

6: Application
mapping

A
pp

lic
at

io
n

Kn
ow

le
dg

e Design
repository Design

Numbers denote sequence of chapters

- 3 - p. marwedel,
informatik 12, 2012

TU Dortmund

Mapping of Applications to Platforms

© Renesas, Thiele

- 4 - p. marwedel,
informatik 12, 2012

TU Dortmund

Distinction between mapping problems

- 5 - p. marwedel,
informatik 12, 2012

TU Dortmund

Problem Description

Given
 A set of applications
 Scenarios on how these applications will be used
 A set of candidate architectures comprising

• (Possibly heterogeneous) processors
• (Possibly heterogeneous) communication architectures
• Possible scheduling policies

Find
 A mapping of applications to processors
 Appropriate scheduling techniques (if not fixed)
 A target architecture (if DSE is included)

Objectives
 Keeping deadlines and/or maximizing performance
 Minimizing cost, energy consumption

- 6 - p. marwedel,
informatik 12, 2012

TU Dortmund

Focus of the ArtistDesign Network

Workshops on Mapping Applications
To MPSoCs, Rheinfels castle,
 1st: http://www.artist-embedded.org/

artist/-map2mpsoc-2008-.html

 2nd: http://www.artist-embedded.org/
artist/-map2mpsoc-2009-.html

 3rd: http://www.artist-embedded.org/
artist/-map2mpsoc-2010-.html

 4th: http://www.artist-embedded.org/
artist/-Map2MPSoC-2011-.html

 Session at ESWEEK 2011 (Marwedel, Teich,
Thiele, Xu, Ha et al.)

 5th: http://www.scopesconf.org

http://www.artist-embedded.org/
http://www.artist-embedded.org/
http://www.artist-embedded.org/
http://www.artist-embedded.org/
http://www.scopesconf.org

- 7 - p. marwedel,
informatik 12, 2012

TU Dortmund

Related Work

 Mapping to EXUs in automotive design
 Scheduling theory:

Provides insight for the mapping task  start times
 Hardware/software partitioning:

Can be applied if it supports multiple processors
 High performance computing (HPC)

Automatic parallelization, but only for
• single applications,
• fixed architectures,
• no support for scheduling,
• memory and communication model usually different

 High-level synthesis
Provides useful terms like scheduling, allocation, assignment
 Optimization theory

- 8 - p. marwedel,
informatik 12, 2012

TU Dortmund

Scope of mapping algorithms

Useful terms from hardware synthesis:
 Resource Allocation

Decision concerning type and number of available
resources
 Resource Assignment

Mapping: Task  (Hardware) Resource
 xx to yy binding:

Describes a mapping from behavioral to structural domain,
e.g. task to processor binding, variable to memory binding
 Scheduling

Mapping: Tasks  Task start times
Sometimes, resource assignment is
considered being included in scheduling.

- 9 - p. marwedel,
informatik 12, 2012

TU Dortmund

Classes of mapping algorithms considered in this
course

 Classical scheduling algorithms
Mostly for independent tasks & ignoring communication,
mostly for mono- and homogeneous multiprocessors

 Dependent tasks as considered in architectural
synthesis
Initially designed in different context, but applicable

 Hardware/software partitioning
Dependent tasks, heterogeneous systems,
focus on resource assignment

 Design space exploration using evolutionary
algorithms; Heterogeneous systems, incl.
communication modeling

- 10 - p. marwedel,
informatik 12, 2012

TU Dortmund

Real-time scheduling

Assume that we are given a task graph G=(V,E).

Def.: A schedule  of G is a mapping
V  Dt

of a set of tasks V to start times from domain Dt.

V1 V2 V4V3

t

G=(V,E)

Dt



Typically, schedules have to respect a number of constraints,
incl. resource constraints, dependency constraints, deadlines.
Scheduling = finding such a mapping.

- 11 - p. marwedel,
informatik 12, 2012

TU Dortmund

Hard and soft deadlines

Def.: A time-constraint (deadline) is called hard if not meeting
that constraint could result in a catastrophe [Kopetz, 1997].

All other time constraints are called soft.
We will focus on hard deadlines.

- 12 - p. marwedel,
informatik 12, 2012

TU Dortmund

Periodic and aperiodic tasks

Def.: Tasks which must be executed once every p units of
time are called periodic tasks. p is called their period. Each
execution of a periodic task is called a job.

All other tasks are called aperiodic.

Def.: Tasks requesting the processor at unpredictable times
are called sporadic, if there is a minimum separation
between the times at which they request the processor.

- 13 - p. marwedel,
informatik 12, 2012

TU Dortmund

Preemptive and non-preemptive scheduling

 Non-preemptive schedulers:
Tasks are executed until they are done.
Response time for external events may be quite long.
 Preemptive schedulers: To be used if

- some tasks have long execution times or
- if the response time for external events to be short.

- 14 - p. marwedel,
informatik 12, 2012

TU Dortmund

Dynamic/online scheduling

 Dynamic/online scheduling:
Processor allocation decisions
(scheduling) at run-time; based on the
information about the tasks arrived so
far.

- 15 - p. marwedel,
informatik 12, 2012

TU Dortmund

Static/offline scheduling

 Static/offline scheduling:
Scheduling taking a priori knowledge about arrival
times, execution times, and deadlines into account.
Dispatcher allocates processor when interrupted by
timer. Timer controlled by a table generated at
design time.

- 16 - p. marwedel,
informatik 12, 2012

TU Dortmund

Time-triggered systems (1)

In an entirely time-triggered system, the temporal control
structure of all tasks is established a priori by off-line support-
tools. This temporal control structure is encoded in a Task-
Descriptor List (TDL) that contains the cyclic schedule for all
activities of the node. This schedule considers the required
precedence and mutual exclusion relationships among the
tasks such that an explicit coordination of the tasks by the
operating system at run time is not necessary. ..

The dispatcher is activated by the synchronized clock tick. It
looks at the TDL, and then performs the action that has been
planned for this instant [Kopetz].

- 17 - p. marwedel,
informatik 12, 2012

TU Dortmund

Time-triggered systems (2)

… pre-run-time scheduling is often the only practical
means of providing predictability in a complex system.
[Xu, Parnas].

It can be easily checked if timing constraints are met.
The disadvantage is that the response to sporadic events may
be poor.

- 18 - p. marwedel,
informatik 12, 2012

TU Dortmund

Centralized and distributed scheduling

 Mono- and multi-processor scheduling:
- Simple scheduling algorithms handle single processors,
- more complex algorithms handle multiple processors.

• algorithms for homogeneous multi-processor systems
• algorithms for heterogeneous multi-processor systems

(includes HW accelerators as special case).

 Centralized and distributed scheduling:
Multiprocessor scheduling either locally on 1 or on several
processors.

- 19 - p. marwedel,
informatik 12, 2012

TU Dortmund

necessary

Schedulability

Set of tasks is schedulable under a set of
constraints, if a schedule exists for that set
of tasks & constraints.

Exact tests are NP-hard in many situations.

Sufficient tests: sufficient conditions for
schedule checked. (Hopefully) small
probability of not guaranteeing a schedule
even though one exists.

Necessary tests: checking necessary
conditions. Used to show no schedule
exists. There may be cases in which no
schedule exists & we cannot prove it.

schedulable
sufficient

- 20 - p. marwedel,
informatik 12, 2012

TU Dortmund

Cost functions

Cost function: Different algorithms aim at minimizing different
functions.

Def.: Maximum lateness =
maxall tasks (completion time – deadline)
Is <0 if all tasks complete before deadline.

t

T1

T2 Max. lateness

Classical scheduling
algorithms

for aperiodic
systems

Peter Marwedel
TU Dortmund, Informatik 12

Germany

G
ra

ph
ic

s:
 ©

 A
le

xa
nd

ra
 N

ol
te

, G
es

in
e

M
ar

w
ed

el
, 2

00
3

These slides use Microsoft clip arts.
Microsoft copyright restrictions apply. 2012年 12 月 12 日

- 22 - p. marwedel,
informatik 12, 2012

TU Dortmund

Aperiodic scheduling:
- Scheduling with no precedence constraints -

Let {Ti } be a set of tasks. Let:
 ci be the execution time of Ti ,
 di be the deadline interval, that is,

the time between Ti becoming available
and the time until which Ti has to finish execution.

 li be the laxity or slack, defined as li = di - ci
 fi be the finishing time.

- 23 - p. marwedel,
informatik 12, 2012

TU Dortmund

Uniprocessor with equal arrival times

Preemption is useless.

Earliest Due Date (EDD): Execute task with earliest due
date (deadline) first.

EDD requires all tasks to be sorted by their (absolute)
deadlines. Hence, its complexity is O(n log(n)).

fifi fi

- 24 - p. marwedel,
informatik 12, 2012

TU Dortmund

Optimality of EDD

EDD is optimal, since it follows Jackson's rule:
Given a set of n independent tasks, any algorithm that
executes the tasks in order of non-decreasing (absolute)
deadlines is optimal with respect to minimizing the maximum
lateness.

Proof (See Buttazzo, 2002):

 Let  be a schedule produced by any algorithm A

 If A  EDD   Ta, Tb, da ≤ db, Tb immediately precedes Ta
in .

 Let ' be the schedule obtained by exchanging Ta and Tb.

- 25 - p. marwedel,
informatik 12, 2012

TU Dortmund

Exchanging Ta and Tb cannot increase lateness

Max. lateness for Ta and Tb in  is Lmax(a,b)=fa-da

Max. lateness for Ta and Tb in ' is L'max(a,b)=max(L'a, L'b)

Two possible cases
1. L'a ≥ L'b: L'max(a,b) = f'a – da < fa – da = Lmax(a,b)

since Ta starts earlier in schedule '.
2. L'a ≤ L'b:  L'max(a,b) = f'b – db = fa – db ≤ fa – da = Lmax(a,b)

since fa=f'b and da ≤ db

 L'max(a,b) ≤ Lmax(a,b)

Tb

TbTa


'

Ta

fa=f'b

- 26 - p. marwedel,
informatik 12, 2012

TU Dortmund

EDD is optimal

Any schedule  with lateness L can be transformed into an
EDD schedule n with lateness Ln ≤ L, which is the minimum
lateness.

EDD is optimal (q.e.d.)

- 27 - p. marwedel,
informatik 12, 2012

TU Dortmund

Earliest Deadline First (EDF): - Horn’s Theorem -

Different arrival times: Preemption potentially reduces lateness.

Theorem [Horn74]: Given a set of n independent tasks with
arbitrary arrival times, any algorithm that at any instant executes
the task with the earliest absolute deadline among all the ready
tasks is optimal with respect to minimizing the maximum
lateness.

- 28 - p. marwedel,
informatik 12, 2012

TU Dortmund

Earliest Deadline First (EDF): - Algorithm -

Earliest deadline first (EDF) algorithm:
 Each time a new ready task arrives:
 It is inserted into a queue of ready tasks, sorted by their

absolute deadlines. Task at head of queue is executed.
 If a newly arrived task is inserted at the head of the

queue, the currently executing task is preempted.
Straightforward approach with sorted lists (full comparison with
existing tasks for each arriving task) requires run-time O(n2);
(less with binary search or bucket arrays).

Sorted queue

Executing task

- 29 - p. marwedel,
informatik 12, 2012

TU Dortmund

Earliest Deadline First (EDF): Example -

Later deadline
 no preemption

Earlier deadline
 preemption

- 30 - p. marwedel,
informatik 12, 2012

TU Dortmund

Optimality of EDF

To be shown: EDF minimizes maximum lateness.
Proof (Buttazzo, 2002):
 Let  be a schedule produced by generic schedule A
 Let EDF: schedule produced by EDF
 Preemption allowed: tasks executed in disjoint time

intervals
  divided into time slices of 1 time unit each
 Time slices denoted by [t, t+1)
 Let (t): task executing in [t, t+1)
 Let E(t): task which, at time t, has the earliest deadline
 Let tE(t): time (t) at which the next slice of task E(t)

begins its execution in the current schedule

- 31 - p. marwedel,
informatik 12, 2012

TU Dortmund

Optimality of EDF (2)

If   EDF, then there exists time t: (t)  E(t)
Idea: swapping (t) and E(t) cannot increase max. lateness.

If (t) starts at
t=0 and
D=maxi{di }
then  EDF can
be obtained
from  by at
most D
transpositions

[Buttazzo, 2002]

- 32 - p. marwedel,
informatik 12, 2012

TU Dortmund

Optimality of EDF (3)

Algorithm interchange:
{ for (t=0 to D-1) {

if ((t)  E(t)) {
(tE) = (t);
(t) = E(t); }}}

Using the same argument as in
the proof of Jackson’s algorithm,
it is easy to show that swapping
cannot increase maximum
lateness; hence EDF is optimal.

Does interchange preserve schedulability?
1. task E(t) moved ahead: meeting deadline in new

schedule if meeting deadline in 
2. task (t) delayed: if (t) is feasible, then (tE+1) ≤ dE,

where dE is the earliest deadline. Since dE ≤ di for any i,
we have tE+1 ≤ di, which guarantees schedulability of the
delayed task. q.e.d.

[Buttazzo, 2002]

- 33 - p. marwedel,
informatik 12, 2012

TU Dortmund

Least laxity (LL), Least Slack Time First (LST)

Priorities = decreasing function of the laxity
(lower laxity  higher priority); changing priority; preemptive.

- 34 - p. marwedel,
informatik 12, 2012

TU Dortmund

Properties

 Not sufficient to call scheduler & re-compute laxity just at
task arrival times.

 Overhead for calls of the scheduler.
 Many context switches.
 Detects missed deadlines early.
 LL is also an optimal scheduling for mono-processor

systems.
 Dynamic priorities  cannot be used with a fixed prio OS.
 LL scheduling requires the knowledge of the execution

time.

- 35 - p. marwedel,
informatik 12, 2012

TU Dortmund

Scheduling without preemption (1)

Lemma: If preemption is not allowed, optimal schedules may
have to leave the processor idle at certain times.
Proof: Suppose: optimal schedulers never leave processor
idle.

- 36 - p. marwedel,
informatik 12, 2012

TU Dortmund

Scheduling without preemption (2)

T1: periodic, c1 = 2, p1 = 4, d1 = 4
T2: occasionally available at times 4*n+1, c2= 1, d2= 1
T1 has to start at t =0
 deadline missed, but schedule is possible (start T2 first)
 scheduler is not optimal  contradiction! q.e.d.

- 37 - p. marwedel,
informatik 12, 2012

TU Dortmund

Scheduling without preemption

Preemption not allowed:  optimal schedules may leave
processor idle to finish tasks with early deadlines arriving late.

Knowledge about the future is needed for optimal
scheduling algorithms

No online algorithm can decide whether or not to keep idle.

EDF is optimal among all scheduling algorithms not keeping
the processor idle at certain times.

If arrival times are known a priori, the scheduling problem
becomes NP-hard in general. B&B typically used.

- 38 - p. marwedel,
informatik 12, 2012

TU Dortmund

Summary

Definition mapping terms

 Resource allocation, assignment, binding, scheduling

 Hard vs. soft deadlines

 Static vs. dynamic TT-OS

 Schedulability

Classical scheduling

 Aperiodic tasks

• No precedences
- Simultaneous (EDD)

& Asynchronous Arrival Times (EDF, LL)

