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Periodic Control System

Pseudo-code for this system

set timer to interrupt periodically
with period T ;

at each timer interrupt
do

• perform analog-to-digital
conversion to get y ;

• compute control output u;

• output u and do
digital-to-analog conversion;

od
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Example: Sporadic Control System

Pseudo-code for this system

while (true)

• start := get the system tick;

• perform analog-to-digital
conversion to get y ;

• compute control output u;

• output u and do
digital-to-analog conversion;

• end := get the system tick;

• timeToSleep :=
T − (end − start);

• sleep timeToSleep;

end while
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Periodic and Sporadic Task Models

• When jobs (usually with the same computation requirement)
are released recurrently, these jobs can be modeled by a
recurrent task

• Periodic Task τi :
• A job is released exactly and periodically by a period Ti

• A phase φi indicates when the first job is released
• A relative deadline Di for each job from task τi
• (φi ,Ci ,Ti ,Di ) is the specification of periodic task τi , where Ci

is the worst-case execution time. When φi is omitted, we
assume φi is 0.

• Sporadic Task τi :
• Ti is the minimal time between any two consecutive job

releases
• A relative deadline Di for each job from task τi
• (Ci ,Ti ,Di ) is the specification of sporadic task τi , where Ci is

the worst-case execution time.
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Examples of Recurrent Task Models

Periodic task: (φi ,Ci ,Ti ,Di ) = (2, 2, 6, 6)

release deadline

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

J1 J1 J1 J1 J1

Sporadic task: (Ci ,Ti ,Di ) = (2, 6, 6)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

J1 J1 J1 J1
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Relative Deadline <=> Period

For a task set, we say that the task set is with

• implicit deadline when the relative deadline Di is equal to the
period Ti , i.e., Di = Ti , for every task τi ,

• constrained deadline when the relative deadline Di is no more
than the period Ti , i.e., Di ≤ Ti , for every task τi , or

• arbitrary deadline when the relative deadline Di could be
larger than the period Ti for some task τi .

The response time of a job is its finishing time minus its arrival
time. The worst-case response time of task τi is the maximum
response time among the jobs of task τi .
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Some Definitions for Sporadic/Periodic Tasks

• Periodic Tasks:
• Synchronous system: Each task has a phase of 0.
• Asynchronous system: Phases are arbitrary.

• Hyperperiod: Least common multiple (LCM) of Ti .

• Task utilization of task τi : Ui := Ci
Ti

.

• System (total) utilization: U(T ) :=
∑

τi∈T Ui .
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Outline

Schedulability for Dynamic-Priority Scheduling

Schedulability for Static-Priority (or Fixed-Priority) Scheduling
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Utilization-Based Test for EDF Scheduling

Theorem

Liu and Layland: A task set T of n independent, preemptable, pe-
riodic tasks with implicit deadlines can be feasibly scheduled (under
EDF) on one processor if and only if its total utilization U is at most
100%.

Proof

• The only if part is obvious: If U > 1, then some task clearly
must miss a deadline. So, we concentrate on the if part.

• Contrapositive: if T is not schedulable, then U > 1.
• Let Ji,k be the first job to miss its deadline
• Let di,k be the absolute deadline of Ji,k
• Let t−1 be the last instant before di,k , at which the processor

is either idle or executing a job with absolute deadline larger
than di,k (cont.)
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Proof of Utilization-Bound Test for EDF

Proof.

Because Ji ,k missed its deadline, we know that

di ,k − t−1 <
demand in [t−1, di ,k)
by jobs with absolute deadline no more than di ,k

=
n∑

j=1

⌊
di ,k − t−1

Tj

⌋
Cj

≤
n∑

j=1

di ,k − t−1
Tj

Cj

By cancelling di ,k − t−1, we conclude the proof by

1 <
n∑

j=1

Cj

Tj
= U.
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Relative Deadlines Less than Periods

Theorem

A task set T of n independent, preemptable, periodic tasks with
constrained deadlines can be feasibly scheduled (under EDF) on one
processor if

n∑
k=1

Ck

min{Dk ,Tk}
≤ 1.

This theorem only gives a sufficient schedulability test.

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 11 / 37



Outline

Schedulability for Dynamic-Priority Scheduling

Schedulability for Static-Priority (or Fixed-Priority) Scheduling
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Static-Priority (or Fixed-Priority) Scheduling

• Different jobs of a task are assigned the same priority.
• Note: we will assume that no two tasks have the same priority.

• We will implicitly index tasks in decreasing priority order, i.e.,
τi has higher priority than τk if i < k.

• Which strategy is better or the best?
• largest execution time first?
• shortest job first?
• least-utilization first?
• most importance first?
• least period first?
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Rate-Monotonic (RM) Scheduling (Liu and Layland, 1973)

Priority Definition: A task with a smaller period has higher priority,
in which ties are broken arbitrarily.

Example Schedule: τ1 = (1, 6, 6), τ2 = (2, 8, 8), τ3 = (4, 12, 12).
[(Ci ,Ti ,Di )]

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1 τ1 τ1 τ1 τ1

0 2 4 6 8 10 12 14 16 18 20 22 24

τ2 τ2 τ2 τ2

0 2 4 6 8 10 12 14 16 18 20 22 24

τ3 τ3 τ3 τ3 τ3

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 14 / 37



Optimality (or not) of RM

Example Schedule: τ1 = (2, 4, 4), τ2 = (5, 10, 10)

0 2 4 6 8 10 12 14 16 18 20

τ1 τ1 τ1 τ1 τ1 τ1

0 2 4 6 8 10 12 14 16 18 20

τ2 τ2 τ2 τ2 τ2

The above system is schedulable.

No static-priority scheme is optimal for scheduling periodic tasks:
However, a deadline will be missed, regardless of how we choose to
(statically) prioritize τ1 and τ2.

Corollary

RM is optimal.
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Properties of Worst-Case Response Time

Suppose that we are analyzing the worst-case response time of
task τi . Let us assume that the other i − 1 higher-priority tasks are
already verified to meet their deadlines.

τ1

τ2

τ3

τ4

t ′

• Suppose t ′ is the arrival time of a job of task τi .

• A higher priority task τj may release a job before t ′ and this
job is executed after t ′.
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Properties of Worst-Case Response Time (cont.)

Let tj be the arrival time of the first job of task τj after or at time t ′.

• tj ≥ t ′.

• The remaining execution time of the job of task τj arrived before t ′

and unfinished at time t ′ is at most Cj .

Since fixed-priority scheduling greedily executes an available job, the
system remains busy from t ′ till the time instant f at which task τn
finishes the job arrived at time t ′. That is,

∀t ′ < t < f , Ci +
i−1∑
j=1

Cj +
i−1∑
j=1

max

{⌈
t − tj
Tj

⌉
Cj , 0

}
> t − t ′.

As a result, (t − t ′ is replaced by t)

∀0 < t < f − t ′, Ci +
i−1∑
j=1

Cj +
i−1∑
j=1

⌈
t − tj
Tj

⌉
Cj > t.
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Properties of Worst-Case Response Time (cont.)

The minimum t such that

∃0 < t ≤ Ti , Ci +
i−1∑
j=1

Cj +
i−1∑
j=1

⌈
t − tj
Tj

⌉
Cj = t.

is a safe upper bound on the worst-case response time of task τi .

Why do we need to constrain t ≤ Ti?
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Aside: Critical Instants

Definition

The critical instant of a task τi is a time instant such that:

1 the job of τi released at this instant has the maximum
response time of all jobs in τi , if the response time of every
job of τi is at most Ti , the period of τi , and

2 the response time of the job released at this instant is greater
than Ti if the response time of some job in τi exceeds Ti .

Informally, a critical instant of τi represents a worst-case scenario
from τi ’s standpoint when we use static-priority scheduling.
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Critical Instants in Static-Priority Systems

Theorem

[Liu and Layland, JACM 1973] The critical instance of task τi for a
set of independent, preemptable periodic tasks with implicit dead-
lines is to release the first jobs of all the higher-priority tasks at the
same time.

We are not saying that τ1, . . . , τi will all necessarily release their
first jobs at the same time, but if this does happen, we are claiming
that the time of release will be a critical instant for task τi .
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Critical Instants: Informal Proof

τ1

τ2

τ3

τ4

t−1 t ′ tR
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Shifting the release time of tasks together will increase the
response time of task τi .

• Consider a job of τi , released at time t ′, with completion time
tR .

• Let t−1 be the latest idle instant for τ1, . . . , τi−1 at or before tR .

• Let J be τi ’s job released at t ′.



Critical Instants: Informal Proof

τ1

τ2

τ3

τ4

t−1 t ′ tR
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We will show that shifting the release time of tasks together
will increase the response time of task τi .

• Moving J from t ′ to t−1 does not decrease the completion
time of J.
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We will show that shifting the release time of tasks together
will increase the response time of task τi .

• Releasing τ1 at t−1 does not decrease the completion time
of J.



Critical Instants: Informal Proof

τ1

τ2

τ3

τ4

t−1 t ′ tR
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We will show that shifting the release time of tasks together
will increase the response time of task τi .

• Releasing τ2 at t−1 does not decrease the completion time
of J.

• Repeating the above movement and proves the criticality
of the critical instant



Schedulability Condition

According to the critical instant theorem, to test the schedulability
of task τi , we have to

1 release all the higher-priority tasks at time 0 together with
task τi

2 release all the higher-priority task instances as early as they
can

We can simply simulate the above behavior to verify whether task
τi misses the deadline.
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TDA (Time-Demand Analysis)

The time-demand function Wi (t) of the task τi is defined as
follows:

Wi (t) = Ci +
i−1∑
j=1

⌈
t

Tj

⌉
Cj .

Theorem

A system T of periodic, independent, preemptable tasks is schedu-
lable on one processor by algorithm A if

∀τi ∈ T ∃t with 0 < t ≤ Di and Wi (t) ≤ t

holds. This condition is also necessary for synchronous, periodic
task systems and also sporadic task sets.

Note that this holds for implicit-deadline and constrained-deadline
task sets. The sufficient condition can be proved by contradiction.
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How to Use TDA? (Only for References)

The theorem of TDA might look strong as it requires to check all
the time t with 0 < t ≤ Di for a given τi . There are two ways to
avoid this:

• Iterate using t(k + 1) := Wi (t(k)), starting with
t(0) :=

∑i
j=1 Cj , and stopping when, for some `,

t(`) = Wi (t(`)) or t(`) > Di .

• Only consider t ∈ {`Tj − ε | 1 ≤ j ≤ i , ` ∈ N+}, where ε is a
constant close to 0. That is, only consider t at which a job of
higher-priority tasks arrives.
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Optimality Among Static-Priority Algorithms

Theorem

A system T of n independent, preemptable, synchronous periodic
tasks with implicit deadlines can be feasibly scheduled on one pro-
cessor according to the RM algorithm whenever it can be feasibly
scheduled according to any static priority algorithm.

The proof is omitted. It can be proved by using the critical instant
theorem and the TDA analysis.

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 28 / 37



Harmonic Real-Time Systems

Definition

A system of periodic tasks is said with harmonic periods (also: simply
periodic) if for every pair of tasks τi and τk in the system where
Ti < Tk , Tk is an integer multiple of Ti .

For example: Periods are 2, 6, 12, 24.

Theorem

[Kuo and Mok]: A system T of harmonic, independent, preemptable,
and implicit-deadline tasks is schedulable on one processor according
to the RM algorithm if and only if its total utilization U(T ) =∑

τj∈T
Cj

Tj
is less than or equal to 1.
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Proof for Harmonic Systems

The case for the “only-if” part is skipped.

τ1

τ2

τ3

By using the contrapositive proof approach, suppose that T is not
schedulable and τi misses its deadline. We will prove that the
utilization must be larger than 1.

• The response time of τi is larger than Di .

• By critical instants, releasing all the tasks τ1, τ2, . . . , τi at
time 0 will lead to a response time of τi larger than Di .
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Proof for Harmonic Systems (cont.)

As the schedule is workload-conserving, we know that from time 0
to time Di , the whole system is executing jobs. Therefore,

Di < the workload released in time interval [0,Di )

=
i∑

j=1

Cj · ( the number of job releases of τj in time interval [0,Di ))

=
i∑

j=1

Cj ·
⌈
Di

Tj

⌉
=∗

i∑
j=1

Cj ·
Di

Tj
,

where =∗ is because Di = Ti is an integer multiple of Tj when
j ≤ i .

By canceling Di , we reach the contradiction by having

1 <
i∑

j=1

Cj

Tj
≤
∑
τj∈T

Cj

Tj
.
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Utilization-Based Schedulability Test

• Task utilization:

Ui :=
Ci

Ti
.

• System (total) utilization:

U(T ) :=
∑
τi∈T

Ci

Ti
.

A task system T fully utilizes the processor under scheduling
algorithm A if any increase in execution time (of any task) causes
A to miss a deadline. In this case, U(T ) is an upper bound on
utilization for A, denoted Uub(T ,A).

Ulub(A) is the least upper bound for algorithm A:

Ulub(A) = min
T

Uub(T ,A)
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What is Ulub(A) for?

Feasible Unsure Infeasible

T? Uub(T?,A)

T5 Uub(T5,A)

T4 Uub(T4,A)

T3 Uub(T3,A)

T2 Uub(T2,A)

T1 Uub(T1,A)

0 Ulub(A) 1

...
...

...
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Liu and Layland Bound

Theorem

[Liu and Layland] A set of n independent, preemptable periodic tasks
with implicit deadlines can be scheduled on a processor according

to the RM algorithm if its total utilization U is at most n(2
1
n − 1).

In other words,

Ulub(RM, n) = n(2
1
n − 1) ≥ 0.693.

n Ulub(RM, n) n Ulub(RM, n)
2 0.828 3 0.779
4 0.756 5 0.743
6 0.734 7 0.728
8 0.724 9 0.720

10 0.717 ∞ 0.693 = ln2

Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 34 / 37



Least Upper Bound
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Comparison between RM and EDF (Implicit Deadlines)

RM
• Low run-time overhead:O(1)

with priority sorting in
advance

• Optimal for static-priority

• Response time analysis is
NP-hard (even if the
relative deadline = period)

• Least upper bound: 0.693

• In general, more preemption

EDF
• High run-time

overhead:O(log n) with
balanced binary tree

• Optimal for dynamic-priority

• Schedulability test is easy
(when the relative deadline
= period)

• Least upper bound: 1

• In general, less preemption
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