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Numbers indicated on the right in red [ ] are marks that may be awarded if that particular
step is done correctly.

1. Provide a short proof or answer of the following.

(a) Let A, B ∈ F and P (A) = 0. Then P (Ac ∪B) = 1. [2]

Soln: Ac ⊆ Ac ∪B =⇒ P (Ac) ≤ P (Ac ∪B) and P (A) = 0 =⇒ P (Ac) = 1. [1]

Thus 1 = P (Ac) ≤ P (Ac ∪B) ≤ 1 =⇒ P (Ac ∪B) = 1 [1]

(b) Let A and B be two events such that P (A) = p1 > 0, P (B) = p2 > 0 and p1 +p2 > 1.

Show that P (B|A) ≥ 1− 1− p2

p1

. [2]

Soln: P (B|A) = P (A∩B)
P (A)

= P (A)+P (B)−P (A∪B)
P (A)

[1]

≥ P (A)+P (B)−1
P (A)

(since P (A ∪B) ≤ 1). [1]

Thus P (B|A) ≥ p1+p2−1
p1

= 1− 1−p2
p1

.

(c) Let X be a random variable such that E(X) = 3 and E(X2) = 13, then determine
a lower bound for P (−2 < X < 8). [4]

Soln: σ2 = V ar(X) = E(X2)− (E(X))2 = 13− 9 = 4. [1]

P (−2 < X < 8) = P (−5 < X − 3 < 5) = P (|X − 3| < 5) = 1− P (|X − 3| ≥ 5). [1]

By Chebyshev Inequality P (|X − µ| ≥ k) ≤ σ2

k2
[1]

we have P (|X − 3| ≥ 5) ≤ 4
25

=⇒ P (−2 < X < 8) ≥ 1− 4
25

= 21
25

Thus a lower bound is 21
25

. [1]

(d) If MX(t) = ect for t ∈ R, where c is a constant. Find the variance of X? [2]

Soln: E(X) = cect|t=0 = c, E(X2) = c2ect|t=0 = c2. [1]

Hence, V ar(X) = E(X2)− (E(X))2 = 0. [1]

2. Let Ω = {0, 1, 2, . . .} and F = P(Ω), the power set of Ω. Define P : F → R by

P (A) =
∑
x∈A

p(1− p)x, for 0 < p < 1.

Prove that P is a probability function on (Ω,F). [4]

Soln:

(a) For A ∈ F , P (A) =
∑
x∈A

p(1− p)x ≥ 0 (since p > 0, and (1− p) > 0). [1]

(b) P (Ω) =
∑
x∈Ω

p(1− p)x = p
∞∑
x=0

(1− p)x = p
1−(1−p) = 1. [1]



(c) Let A1, A2, . . . be a countably infinite collection of mutually exclusive events. Then

P

(
∞⋃
i=1

Ai

)
=

∑
x∈

∞⋃
i=1

Ai

p(1− p)x

=
∞∑
i=1

∑
x∈Ai

p(1− p)x

=
∞∑
i=1

P (Ai).

[1]

[1]

Therefore, P is a probability function on (Ω,F).

3. L Let X be a random variable having a binomial distribution with probability of success
p ∈ (0, 1). Find the moment generating function of X. Mention its’ domain explicitly[3]

Soln: The moment generating function of X is given by

MX(t) = E(etX)

=
n∑
x=0

etxfX(x)

=
n∑
x=0

etx
(
n

x

)
px(1− p)n−x

=
n∑
x=0

(
n

x

)
(pet)x(1− p)n−x

= (pet + q)n ∀t ∈ R

[1]

[1]

[1]

4. Let X be a discrete random variable with probability mass function

fX(x) =

{
1
3
(2

3
)x if x ∈ {0, 1, 2, . . .}

0 otherwise.

Then show that Y =
X

X + 1
is a discrete random variable and hence find the probability

mass function of Y . [5]

Soln: Let h : R \ {1} −→ R be a function defined by h(x) = x
x+1

. Then clearly h
is continuous function and hence a Borel function. So Y = h(X) is a discrete random
variable with support SY = {y = i

i+1
, i ∈ {0, 1, . . .}}. [1+1]

Therefore, for y /∈ SY , the probability mass function of Y is fY (y) = 0. [1]

For y ∈ SY , the probability mass function of Y ,
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fY (y) = P

({
X

X + 1
= y

})
= P ({X = y(X + 1)})

= P

({
X =

y

1− y

})

=


1
3
(2

3
)i if y ∈ SY

0 otherwise.

[1]

[1]

Thus the probability mass function of Y is

fY (y) =

{
1
3
(2

3
)i if y ∈ SY

0 otherwise.

5. Let X be a random variable with probability density function

fX(x) =

{
θe−θx if x ≥ 0

0 otherwise.

where θ > 0. Find the probability density function of Y = (X − 1
θ
)2. [7]

Soln: Define a function h(x) = (x − 1
θ
)2 then note that h(x) is a continuous function.

This implies Y = (X − 1
θ
)2 is a random variable.

Consider S1 = (0, 1
θ
) and S2 = (1

θ
, ∞) so that SX = (0, ∞) = S1 ∪ S2. [1]

Now, h(x) = (x− 1
θ
)2 is strictly decreasing in S1 with inverse h−1

1 (y) = 1
θ
−√y. [1]

Now, h(x) = (x− 1
θ
)2 is strictly increasing in S2 with inverse h−1

2 (y) = 1
θ

+
√
y. [1]

Then the probability density function of Y is given by

fY (y) =


fX(h−1

1 (y))| d
dy

(h−1
1 (y))|+ fX(h−1

2 (y))| d
dy

(h−1
2 (y)) if 0 < y < 1

θ2

fX(h−1
2 (y))| d

dy
(h−1

2 (y))|, if y > 1
θ2

0 otherwise

=


θ

2e
√
y
(eθ
√
y + e−θ

√
y) if 0 < y < 1

θ2

θ
2e
√
y
e−θ
√
y if y > 1

θ2

0 otherwise.

[1]

[1]
[1]

[1]

6. Let (X, Y ) be a random vector with joint probability density function

f(x, y) =

{
x2 + xy

3
, 0 < x < 1, 0 < y < 1

0 otherwise.

Find all moments of order 2. Also find the correlation coefficient between X and Y . [7]

Soln: E(X2) =
∫ 1

0

∫ 1

0
x2f(x, y)dxdy = 29

120
. [1]
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E(XY ) =
∫ 1

0

∫ 1

0
xyf(x, y)dxdy = 35

216
. [1]

E(Y 2) =
∫ 1

0

∫ 1

0
y2f(x, y)dxdy = 11

72
. [1]

E(X) =
∫ 1

0

∫ 1

0
xf(x, y)dxdy = 11

36
. [1]

E(Y ) =
∫ 1

0

∫ 1

0
yf(x, y)dxdy = 2

9
. [1]

Cov(X, Y ) = E(XY )− E(X)E(Y ) = 61
648

. [1]

Now ρ(X, Y ) = Cov(X,Y )√
V ar(X)

√
V ar(Y )

==
61
√

10√
961
√

67
. [1]

7. Let X = (X1, X2) be a random vector with joint probability density function

fX(x1, x2) =

{
1+x1x2

4
, |x1| < 1, |x2| < 1

0 otherwise.

Are X1 and X2 independent? [5]

Soln: The marginal probability density function of X1 is given by

fX1(x1) =

∫ ∞
−∞

fX(x1, x2)dx2

=


∫ 1

−1

1 + x1x2

4
dx2 if |x1| < 1

0 otherwise

=

{
1
2

if |x1| < 1
0 otherwise.

[1]

[1]

The marginal probability density function of X2 is

fX2(x2) =

∫ ∞
−∞

fX(x1, x2)dx1

=


∫ 1

−1

1 + x1x2

4
dx2 if |x2| < 1

0 otherwise

=

{
1
2

if |x2| < 1
0 otherwise.

[1]

[1]

Clearly fX(x1, x2) 6= fX1(x1)fX2(x2). Hence X1 and X2 are not independent. [1]

8. Let X = (X1, X2) be a random vector with probability density function

fX(x1, x2) =


1
2
e−x1 if 0 < x2 < x1 <∞

1
2
e−x2 if 0 < x1 < x2 <∞

0 otherwise.
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Find the joint probability density function of Y1 = X1 + X2 and Y2 =
X2

X1 +X2

using

transformation technique. [7]

Soln: Let g(x1, x2) = (x1 + x2,
x2

x1 + x2

) be a one-to-one function from the range of ran-

dom vectorX = (X1, X2) to R2 with inverse function h(y1, y2) = (h1(y1, y2), h2(y1, y2)) =
(y1(1− y2), y1y2). [2]
The Jacobian of the transformation is

J =

∣∣∣∣∣∣∣∣
∂h1(y1, y2)

∂y1

∂h1(y1, y2)

∂y2

∂h2(y1, y2)

∂y1

∂h2(y1, y2)

∂y2

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣
1− y2 −y1

y2 y1

∣∣∣∣∣∣ = y1 [1]

Since J = y1 is different from zero in range of transformation, and g and h are continuous,
(Y1, Y2) is an absolutely continuous random vector with probability density function [1]

f(Y1, Y2)(y1, y2) = f(X1, X2) (h1(y1, y2), h2(y1, y2)) |J |
= |y1|f(X1, X2) (y1(1− y2), y1y2)

=


1

2
|y1|e−y1(1−y2) if 0 < y1y2 < y1(1− y2) <∞

1

2
|y1|e−y1y2 if 0 < y1(1− y2) < y1y2 <∞

0 otherwise

[1]

[1+1]

9. Let X1, X2, · · · , Xk be k (fixed positive integer) absolutely continuous random variables
with probability density functions f1(·), f2(·), . . . , fk(·). Let ci ≥ 0, i = 1, 2, . . . , k, be
real constant such that

∑k
i=1 ci = 1.

(a) Show that

f(x) =
k∑
i=1

cifi(x)

is a probability density function of a random variable. [2]

Soln: As fi(x) ≥ 0, ∀x ∈ R, i = 1, 2, . . . , k, ci ≥ 0, i = 1, 2, . . . , k,

f(x) =
k∑
i=1

cifi(x) ≥ 0, ∀x ∈ R. [1]

Also
∫∞
−∞ f(x)dx =

∫∞
−∞{

∑k
i=1 cifi(x)}dx =

∑k
i=1 ci{

∫∞
−∞ fi(x)dx} = 1 (as

∫∞
−∞ fi(x)dx

= 1, i = 1, 2, . . . , k, and
∑k

i=1 ci = 1). [1]

(b) LetX be the absolutely continuous random variable with probability density function
f(·) as given in part (a). Show that

µ =
k∑
i=1

ciµi,
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where µ = E(X) and µi = E(Xi), i = 1, 2, . . . , k, provided all the expectations
involved exists. [2]

Soln:

µ = E(X) =

∫ ∞
−∞

xf(x)dx [1]

=

∫ ∞
−∞

x(
k∑
i=1

cifi(x))dx

=
k∑
i=1

ci(

∫ ∞
−∞

xfi(x))dx)

=
k∑
i=1

µici (as µi =

∫ ∞
−∞

xfi(x))dx) [1]

10. Let (Ω, F , P ) be a probability space and A, B ∈ F . Define X and Y so that

X(ω) = IA(ω), Y (ω) = IB(ω) ∀ ω ∈ Ω.

(a) Show that (X, Y ) is a discrete type random vector. [5]

Soln: The probability function of (X, Y ) is

P (X = x, Y = y) =



P (Ac ∩Bc) if x = 0, y = 0

P (A ∩Bc) if x = 1, y = 0

P (Ac ∩B) if x = 0, y = 1

P (A ∩B) if x = 1, y = 1

0 otherwise.

[4]

Since S(X,Y ) = {(0, 0), (1, 0), (0, 1), (1, 1)} is countable and∑
(x, y)∈S(X, Y )

P (X = x, Y = y) = 1,

(X, Y ) is a discrete type random vector. [1]

(b) Using part (a), show that X and Y are independent if and only if A and B are
independent. [6]

Soln:(⇒) Assume that X and Y are independent. So P (X = x, Y = y) = P (X =
x)P (Y = y). [1]

In particular, P (X = 1, Y = 1) = P (X = 1)P (Y = 1). Hence from Part (a), P (A∩B) =
P (A)P (B). Therefore A and B are independent. [1]

(⇐) Assume that A and B are independent. So P (A ∩ B) = P (A)P (B), P (Ac ∩ B) =
P (Ac)P (B), P (A ∩Bc) = P (A)P (Bc), P (Ac ∩Bc) = P (Ac)P (Bc). [3]

So from Part (a), it is clear that P (X = x, Y = y) = P (X = x)P (Y = y) i. e. X and Y
are independent. [1]
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11. A bus and a passenger arrive on a bus-stop at uniformly distributed time over the time
interval 0 to 1 hour. Assume that the arrival times of the bus and passenger are inde-
pendent of one another. The passenger will wait up to 15 minutes for the bus to arrive.
What is the probability that the passenger will take the bus? [7]

Soln: Let X and Y be the times of the arrival of bus and the passenger, respectively.
We need to find

P (0 ≤ X − Y ≤ 0.25) , [1]

where X and Y are independent. Also X ∼ U(0, 1) and Y ∼ U(0, 1). Hence joint PDF
of (X, Y ) is given by

f(X,Y )(x, y) =

{
1 if 0 < x < 1, 0 < y < 1 [1]
0 otherwise. [1]

y

(0,0) x

(1,1)

(1,0)

(0,1)

(0.25,0)

(1,0.75)A

B

−→ x− y = 0.25

Hence

P (0 ≤ X − Y ≤ 0.25) =

∫ ∫
A

f(X,Y )(x, y)dxdy [1]

=

∫ ∫
A

1dxdy

= Area of A [1]

= 1− Area of B [1]

= 1− 0.5× 0.75× 0.75

= 0.71875. [1]

12. You enter a special kind of chess tournament, in which you play one game with each
of three opponents, but you get to choose the order in which you play your opponents,
knowing the probability of a win against each. You win the tournament if you win two
games in a row, and you want to maximize the probability of winning. Show that it is
optimal to play the weakest opponent second, and that the order of playing the other two
opponents does not matter? [10]

Soln: Let s < m < w be the probability of winning a game by myself against other three
players. For simplicity we are labelling the strongest player as player 1, the weekest player
as player 3, and the the other player as player 2.
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Consider the following table

Sl.
No.

Order of the play Probability of winning the tournament

1. (1, 2, 3) sm + (1-s)mw = sm + mw -smw [1]
2. (3, 2, 1) wm + (1-w)ms = sm + mw -smw [1]
3. (2, 1, 3) ms + (1-m)sw = ms + sw -smw [1]
4. (3, 1, 2) ws + (1-w)ms = ms + sw -smw [1]
5. (1, 3, 2) sw + (1-s)wm = sw + mw -smw [1]
6. (2, 3, 1) mw + (1-m)ws = sw + mw -smw [1]

It is clear from the table that probability of winning the tournament is depends only on
the choice of the opponent in the second game. [2]

The choice of the opponents in first and third games are immaterial. Hence I need to
compare the probabilities in Sl. No. 1, 3 and 5.

Now s < w ⇒ ms < mw ⇒ ms+ sw− smw < mw+ sw− smw ⇒ Prob. in Sl. No. 3 <
Prob. in Sl. No. 5. [1]

Also m < w ⇒ sm < sw ⇒ sm + mw − smw < sw + mw − smw ⇒ Prob. in Sl. No. 1
< Prob. in Sl. No. 5.

Hence the optimal choice is to play the weakest opponent second. [1]
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