Indian Institute of Information Technology Allahabad Complex Analysis and Integral Transformation (SMAT330)

Back Paper Examination - Tentative Marking Scheme

Numbers indicated on the right in red [] are marks that may be awarded if that particular step is done correctly.

Notations:

- 1. $\mathbb{C}^* = \mathbb{C} \setminus \{0\}, i^2 = -1.$
- 2. $\mathcal{F}(s) = \mathcal{L}(f(t))$ denotes the Laplace transform of a function f and $\mathcal{L}^{-1}(\mathcal{F}(s)) = f(t)$ denote the inverse Laplace transform.
- 3. $\mathfrak{F}_{\mathfrak{s}}\{f(x)\}\$ and $\mathfrak{F}_{\mathfrak{c}}\{f(x)\}\$ denotes the Fourier sine and cosine transforms respectively.
- 1. Provide a short proof or answer of the following statements.
 - (a) The set {z ∈ C : ¹/₂ < |z| < ⁷/₃} is connected. [1]
 Solution. The set S = {z ∈ C : ¹/₂ < |z| < ⁷/₃} is connected since each pair of points z₁ and z₂ in it can be joined by a polygonal line, consisting of a finite number of line segments joined end to end, that lies entirely in S. [1]
 - (b) Suppose f and g are piecewise continuous functions on $[0, \infty]$, and have exponential order α and β respectively. Then $\mathcal{L}(af + bg) = a\mathcal{L}(f) + b\mathcal{L}(g)$, where a and b are arbitrary constants. [2]

Solution. Since $\mathcal{L}(f)$ exists for $\mathcal{R}e(s) > \alpha$ and $\mathcal{L}(g)$ exists for $\mathcal{R}e(s) > \beta$, $\mathcal{L}(f+g)$ exists for $\mathcal{R}e(s) > \max\{\alpha, \beta\}$. Moreover, [1] $\mathcal{L}(af+bg) = \int_0^\infty e^{-st}(af(t)+bg(t))dt = a \int_0^\infty e^{-st}f(t)dt + b \int_0^\infty e^{-st}g(t)dt = a\mathcal{L}(f) + b\mathcal{L}(g).$ [1]

(c) Let f(x) be continuous and absolutely integrable on the x-axis, f'(x) piecewise continuous on every finite interval, and $\lim_{x\to\infty} f(x) = 0$. Then

$$\mathfrak{F}_{\mathfrak{s}}\{f'(x)\} = -w\mathfrak{F}_{\mathfrak{c}}\{f(x)\}.$$
[3]

Solution.

$$\mathfrak{F}_{\mathfrak{s}}\{f'(x)\} = \sqrt{\frac{2}{\pi}} \int_0^\infty f'(x) \sin wx \, dx \qquad [1]$$
$$= \sqrt{\frac{2}{\pi}} \left[f(x) \sin wx \Big|_0^\infty - w \int_0^\infty f(x) \cos wx \, dx \right] \qquad [1]$$
$$= -w \mathfrak{F}_{\mathfrak{c}}\{f(x)\}. \qquad [1]$$

(d) Any bounded function has exponential order. [1] **Solution.** Any bounded function f has exponential order 0 as there exists a constant M such $|f(t)| \le M, \forall t$. [1] (e) Evaluate $\int_{|z-i|=2} \frac{e^z}{z(z+3)} dz.$ [4]

Solution. $\int_{|z-i|=2} \frac{e^z}{z(z+3)} dz = \frac{1}{3} \int_{|z-i|=2} \frac{e^z}{z} dz - \frac{1}{3} \int_{|z-i|=2} \frac{e^z}{z+3} dz$ [1]

By Cauchy integral formula, $\int_{|z-i|=2} \frac{e^z}{z} dz = 2\pi i$ [1]

and by Cauchy's Theorem,
$$\int_{|z-i|=2} \frac{e^z}{z+3} dz = 0.$$
 [1]

Hence,
$$\int_{|z-i|=2} \frac{e^z}{z(z+3)} dz = \frac{2\pi i}{3}$$
. [1]

- (f) Does there exists a function f such that $\mathcal{L}(f(t)) = \frac{s}{\log s}$. [2] Solution. No. If $\mathcal{F}(s) = \mathcal{L}(f(t))$, then $\lim_{s \to \infty} \mathcal{F}(s) = 0$. [2]
- (g) Lef f be an entire function such that f(z) > M, ∀z ∈ C, for some constant M. Then f is a constant function. [4]
 Solution. Since |f(z)| > 0, ∀ z ∈ C, f(z) ≠ 0, ∀ z ∈ C. [1]
 Let g(z) = 1/(f(z)). Then g is entire and bounded by 1/M. [1+1]
 By Lioiville's Theorem, g is a constant function and hence f is a constant function. [1]
- 2. (a) Show that the function f(z) = f(x + iy) = √|xy| satisfies Cauchy-Riemann Equations at 0 but it is not differentiable at 0. [5]
 Solution. f(z) = u(x, y) + iv(x, y) = √|xy| implies that u(x, y) = √|xy| and v(x, y) = 0.

The Cauchy Riemann equations are $u_x = v_y$ and $u_y = -v_x$ at $z_0 = x_0 + iy_0$. Thus,

$$u_x(0,0) = \lim_{h \to 0} \frac{u(h,0) - u(0,0)}{h} = 0.$$
 [1]

Similarly, $u_y(0,0) = 0$. Moreover, $v_x(0,0) = 0 = v_y(0,0) = 0$, Hence, the Cauchy-Riemann Equations are satisfied at 0. [1] Now,

$$\lim_{h \to 0} \frac{f(h) - f(0)}{h} = \lim_{(h_1 + ih_2) \to 0} \frac{f(h_1 + ih_2)}{h_1 + ih_2} = \lim_{(h_1 + ih_2) \to 0} \frac{\sqrt{h_1 h_2}}{h_1 + ih_2}.$$
 [1]

Approaching 0 through the line $h_2 = m^2 h_1$, the above limit becomes $\frac{m}{1+im^2}$ [1] which different for different m. Hence f(z) is not differentiable at 0. [1]

(b) Let $\alpha, \beta \in \mathbb{C}$ be such that $|\alpha| < |\beta|$. Find the radius of convergence of the power series

$$\sum_{n=0}^{\infty} (3\alpha^n - 5\beta^n) z^n.$$

[4]

Solution. The radius of convergence R is given by

$$\frac{1}{R} = \lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} \qquad [1]$$

$$= \lim_{n \to \infty} \left| \frac{3\alpha^{n+1} - 5\beta^{n+1}}{3\alpha^n - 5\beta^n} \right|$$

$$= \lim_{n \to \infty} \frac{|\beta^{n+1}|}{|\beta^n|} \left| \frac{3(\frac{\alpha}{\beta})^{n+1} - 5}{3(\frac{\alpha}{\beta})^n - 5} \right| \qquad [1]$$

$$= |\beta| \qquad \left(\because \left| \frac{\alpha}{\beta} \right| < 1 \text{ and } \lim_{n \to \infty} \left(\frac{\alpha}{\beta} \right)^n = 0 \right) \qquad [2]$$

Hence, the radius of convergence is $\frac{1}{|\beta|}$.

(c) Let P be a polynomial of degree $n \ge 1$ with distinct roots. Let γ be a simple closed curve oriented counter clockwise, which does not pass through any root of P but encloses all roots of P. If P' denotes the derivative of P then find the value of the integral

$$\int_{\gamma} \frac{P'(z)}{P(z)} dz$$

Solution. Let z_1, z_2, \ldots, z_n be zeros of P and $P(z) = \alpha(z - z_1) \cdots (z - z_n)$ where $\alpha \in \mathbb{C}$. [2]

 $\left[5\right]$

Then
$$\frac{P'(z)}{P(z)} = \sum_{i=1}^{n} \frac{1}{z - z_i}.$$
 [2]

By Cauchy's integral formula, $\int_{\gamma} \frac{P'(z)}{P(z)} dz = \sum_{i=1}^{n} \int_{\gamma} \frac{dz}{z - z_i} = 2\pi i n.$ [1]

(d) Find all possible series expansions of the function $f(z) = \frac{1}{3z - z^2 - 2}$ in those regions which are bounded. [6]

Solution. The function $f(z) = \frac{1}{3z - z^2 - 2} = \frac{1}{z - 1} - \frac{1}{z - 2}$ [1] which has two singular points z = 1 and z = 2, is analytic in the domains

$$|z| < 1, \ 1 < |z| < 2, \ 2 < |z| < \infty$$

in which the domains $D_1 : |z| < 1$ and $D_2 : 1 < |z| < 2$ are bounded. [1] Since |z| < 1 and |z/2| < 1 in D_1 we have

$$f(z) = -\frac{1}{1-z} + \frac{1}{2} \cdot \frac{1}{1-(z/2)}$$

$$= -\sum_{n=0}^{\infty} z^n + \sum_{n=0}^{\infty} \frac{z^n}{2^{n+1}}$$

$$= \sum_{n=0}^{\infty} (2^{-n-1} - 1) z^n.$$
[1]

In D_2 , 1 < |z| < 2 implies that |1/z| < 1 and |z/2| < 1. Hence,

$$f(z) = \frac{1}{z} \cdot \frac{1}{1 - (1/z)} + \frac{1}{2} \cdot \frac{1}{1 - (z/2)}$$

$$= \sum_{n=0}^{\infty} \frac{1}{z^{n+1}} + \sum_{n=0}^{\infty} \frac{z^n}{2^{n+1}}.$$
[1]

- 3. (a) Determine
 - (i) $\mathcal{L}\left(\frac{1-\cos\omega t}{t}\right)$ mentioning the range for which the Laplace transform exists. [6]

Solution. If f is piecewise continuous on $[0, \infty)$ and of exponential order α , with $F(s) = \mathcal{L}(f(t))$ for real $s > \alpha$, and such that $\lim_{t \to 0^+} \frac{f(t)}{t}$ exists, then [1]

$$\int_{s}^{\infty} F(\xi) \ d\xi = \mathcal{L}\left(\frac{f(t)}{t}\right) \quad (s > \alpha).$$
^[1]

Now,

 $f(t) = 1 - \cos t$, t > 0, is of exponential order 0.

$$F(s) = \mathcal{L}(1 - \cos t) = \frac{1}{s} - \frac{s}{s^2 + \omega^2}.$$
 [1]

Thus, for s > 0,

$$\mathcal{L}\left(\frac{1-\cos t}{t}\right) = \lim_{t \to \infty} \int_{s}^{t} \left(\frac{1}{\xi} - \frac{\xi}{\xi^{2} + \omega^{2}}\right) d\xi \qquad [1]$$

$$= \frac{1}{2} \lim_{t \to \infty} \left[\log \left(\frac{\xi^2}{\xi^2 + \omega^2} \right) \right]_s$$

$$= \frac{1}{2} \log \left(1 + \frac{\omega^2}{s^2} \right).$$
[1]

(ii)
$$\mathcal{L}^{-1}\left(\frac{e^{-\pi s}}{s^2 - 2}\right).$$
 [4]

Solution.
$$\frac{e^{-\pi s}}{s^2 - 2} = e^{-\pi s} \mathcal{L}\left(\frac{1}{\sqrt{2}}\sinh(\sqrt{2}t)\right).$$
 [2]

Therefore,
$$\mathcal{L}^{-1}\left(\frac{e^{-\pi s}}{s^2 - 2}\right) = \frac{1}{\sqrt{2}} u_{\pi}(t) \sinh(\sqrt{2}(t - \pi)).$$
 [2]

(b) Solve the integro-differential equations by the Laplace transform method

$$x'(t) + \int_0^t x(t-\tau)d\tau = \cos t, \quad x(0) = 0.$$

[15]

Solution. The above integro-differential equation can be rewritten as

$$x'(t) + (x*1)(t) = \cos t, \quad x(0) = 0.$$
 [1]

As $\cos t$ is continuous and of exponential order and assuming x(t) is continuous and of exponential order, taking Laplace transform both sides we get for $\mathcal{R}e(s) > 0$, [1]

$$\mathcal{L}(x'(t)) + \mathcal{L}((x*1)(t)) = \frac{s}{s^2 + 1}$$
[1]

$$\implies s\mathcal{L}(x(t)) + \mathcal{L}(x(t)) \cdot \mathcal{L}(1) = \frac{s}{s^2 + 1}$$
[2+2]

$$\implies \mathcal{L}(x(t)) = \frac{s^2}{(s^2 + 1)^2} = \frac{1}{s^2 + 1} - \frac{1}{(s^2 + 1)^2}$$
[1]

$$\implies x(t) = \sin t - \mathcal{L}^{-1}\left(\frac{1}{(s^2 + 1)^2}\right)$$
[1]

Now,

$$\mathcal{L}^{-1}\left(\frac{1}{(s^2+1)^2}\right) = \mathcal{L}^{-1}\left(\frac{1}{s^2+1} \cdot \frac{1}{s^2+1}\right)$$
[1]
= $\sin t * \sin t$ [1]
= $\int_0^t \sin \tau \sin(t-\tau)d\tau$ [1]
= $\frac{1}{2}\int_0^t (-\cos t + \cos \tau)d\tau$ [1]
= $\frac{1}{2}(-t\cos t + \sin t).$ [1]

Therefore,

$$x(t) = \frac{1}{2}(\sin t + t\cos t).$$
 [1]

4. (a) Determine whether the following statements are true or false and justify your answer.

i. Let
$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx, \ n = 0, 1, \dots$$
 and $b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx, \ n = 1, 2, \dots$ Then

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx).$$
[3]

Solution. False. If f(x) is a periodic function with period 2π , piecewise continuous in the interval $[-\pi, \pi]$ and have left-hand and right-hand derivative at each point, then above statement is true [2] except at points x_0 where f(x) is discontinuous. The sum of the series at x_0 is

 $\frac{1}{2}[f(x_0^-) + f(x_0^+)].$ [1] The function $f(x) = \cos x \cos b$ corresponding a Fourier sine series on the interval

ii. The function $f(x) = \cos x$ can be expressed in a Fourier sine series on the interval $-\pi \le x \le \pi$. [2] False. As $\cos x$ is an even function and the interval is $-\pi \le x \le \pi$, $b_n = 0$. Hence, the Fourier series of $\cos x$ will be pure cosine series. [2] (b) Find the Fourier transform of the function

$$f(x) = \begin{cases} -1 & \text{if } -1 < x < 0\\ 1 & \text{if } 0 < x < 1\\ 0 & \text{otherwise.} \end{cases}$$

[5]

Solution.

 \hat{f}

$$\begin{aligned} (w) &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{-iwx} dx \qquad [1] \\ &= -\frac{1}{\sqrt{2\pi}} \int_{-1}^{0} e^{-iwx} dx + \frac{1}{\sqrt{2\pi}} \int_{0}^{1} e^{-iwx} dx \qquad [1] \\ &= -\frac{1}{\sqrt{2\pi}} \cdot \frac{e^{-iwx}}{-iw} \Big|_{-1}^{0} + \frac{1}{\sqrt{2\pi}} \cdot \frac{e^{-iwx}}{-iw} \Big|_{0}^{1} \qquad [1] \\ &= \frac{1}{iw\sqrt{2\pi}} \left(1 - e^{iw} - e^{-iw} + 1\right) \qquad [1] \\ &= \frac{1}{iw\sqrt{2\pi}} \left(2 - 2\cos w\right) \\ &= \sqrt{\frac{2}{\pi}} \left(\frac{1 - \cos w}{iw}\right). \qquad [1] \end{aligned}$$

(c) Find the discrete Fourier transform of z = (1, i, 2 + i, 3). [3] Solution. The discrete Fourier transform of z is given by $\hat{z} = W_4 z$, [1] where

$$W_4 = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & -i & -1 & i \\ 1 & -1 & 1 & -1 \\ 1 & i & -1 & -i \end{pmatrix}$$
[1]

Thus,

$$\hat{z} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & -i & -1 & i \\ 1 & -1 & 1 & -1 \\ 1 & i & -1 & -i \end{pmatrix} \begin{pmatrix} 1 \\ i \\ 2+i \\ 3 \end{pmatrix} \\
= \begin{pmatrix} 6+2i \\ 2i \\ 0 \\ -2-4i \end{pmatrix}.$$
[1]

6