Indian Institute of Information Technology Allahabad Complex Analysis and Integral Transformation (SMAT330)

Back Paper Examination - 2016

Duration: 3 Hour	Date: July 19, 2016
Full Marks: 75	Time: 14:00 – 17:00 IST
Instructor: Abdullah Bin Abu Baker	BTech - III (IT+RGIT)

This question paper contains **two** pages. Attempt **all** the questions. Numbers indicated on the right in [] are full marks of that particular question. **Notations:**

- 1. $\mathbb{C}^* = \mathbb{C} \setminus \{0\}, i^2 = -1.$
- 2. $\mathcal{F}(s) = \mathcal{L}(f(t))$ denotes the Laplace transform of a function f and $\mathcal{L}^{-1}(\mathcal{F}(s)) = f(t)$ denote the inverse Laplace transform.
- 3. $\mathfrak{F}_{\mathfrak{s}}\{f(x)\}\$ and $\mathfrak{F}_{\mathfrak{c}}\{f(x)\}\$ denotes the Fourier sine and cosine transforms respectively.
- 1. Provide a short proof or answer of the following statements.
 - (a) The set $\{z \in \mathbb{C} : \frac{1}{2} < |z| < \frac{7}{3}\}$ is connected. [1]
 - (b) Suppose f and g are piecewise continuous functions on $[0, \infty]$, and have exponential order α and β respectively. Then $\mathcal{L}(af + bg) = a\mathcal{L}(f) + b\mathcal{L}(g)$, where a and b are arbitrary constants. [2]
 - (c) Let f(x) be continuous and absolutely integrable on the x-axis, f'(x) piecewise continuous on every finite interval, and $\lim_{x\to\infty} f(x) = 0$. Then

$$\mathfrak{F}_{\mathfrak{s}}\{f'(x)\} = -w\mathfrak{F}_{\mathfrak{c}}\{f(x)\}$$

(d) Any bounded function has exponential order.

(e) Evaluate
$$\int_{|z-i|=2} \frac{e^z}{z(z+3)} dz.$$
 [4]

(f) Does there exists a function
$$f$$
 such that $\mathcal{L}(f(t)) = \frac{s}{\log s}$. [2]

- (g) Lef f be an entire function such that f(z) > M, $\forall z \in \mathbb{C}$, for some constant M. Then f is a constant function. [4]
- 2. (a) Show that the function $f(z) = f(x + iy) = \sqrt{|xy|}$ satisfies Cauchy-Riemann Equations at 0 but it is not differentiable at 0. [5]
 - (b) Let $\alpha, \ \beta \in \mathbb{C}$ be such that $|\alpha| < |\beta|$. Find the radius of convergence of the power series

$$\sum_{n=0}^{\infty} (3\alpha^n - 5\beta^n) z^n$$

[4]

[3]

[1]

(c) Let P be a polynomial of degree $n \ge 1$ with distinct roots. Let γ be a simple closed curve oriented counter clockwise, which does not pass through any root of P but encloses all roots of P. If P' denotes the derivative of P then find the value of the integral

$$\int_{\gamma} \frac{P'(z)}{P(z)} dz.$$

[5]

- (d) Find all possible series expansions of the function $f(z) = \frac{1}{3z z^2 2}$ in those regions which are bounded. [6]
- 3. (a) Determine

(i)
$$\mathcal{L}\left(\frac{1-\cos\omega t}{t}\right)$$
 mentioning the range for which the Laplace transform exists.
[6]
(ii) $\mathcal{L}^{-1}\left(\frac{e^{-\pi s}}{s^2-2}\right)$.
[4]

(b) Solve the integro-differential equations by the Laplace transform method

$$x'(t) + \int_0^t x(t-\tau)d\tau = \cos t, \quad x(0) = 0.$$
[15]

4. (a) Determine whether the following statements are true or false and justify your answer.

i. Let
$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx, \ n = 0, 1, \dots$$
 and $b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx, \ n = 1, 2, \dots$ Then

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx).$$
[3]

- ii. The function $f(x) = \cos x$ can be expressed in a Fourier sine series on the interval $-\pi \le x \le \pi$. [2]
- (b) Find the Fourier transform of the function

$$f(x) = \begin{cases} -1 & \text{if } -1 < x < 0\\ 1 & \text{if } 0 < x < 1\\ 0 & \text{otherwise.} \end{cases}$$

[5]

(c) Find the discrete Fourier transform of z = (1, i, 2 + i, 3). [3]