UNIVARIATE AND MULTIVARIATE CALCULUS - ASSESSMENT I SECTION D

Question. Given nonempty subsets A and B of positive real numbers, define

$$
A B=\{x y: x \in A, y \in B\} .
$$

Show that $\sup (A B)=\sup A \sup B$.
Solution. Let $\sup A=\alpha$ and $\sup B=\beta$. Then
$x \leq \alpha$ for all $x \in A$ and $y \leq \beta$ for all $y \in B$.
$\Longrightarrow x y \leq \alpha \beta$ for all $x \in A$ and $y \in B$. Thus, $\alpha \beta$ is an upper bound of $A B$.
Let γ be any upper bound of $A B$. Then $x y \leq \gamma$ for all $x \in A$ and $y \in B$.
In particular, $x \leq \frac{\gamma}{y}$ for all $x \in A$. This implies that $\alpha \leq \frac{\gamma}{y}$ by definition of supremum.
$\Longrightarrow y \leq \frac{\gamma}{\alpha}$ for all $y \in B$. Hence, $\beta \leq \frac{\gamma}{\alpha}$ or $\alpha \beta \leq \gamma$.

