UNIVARIATE AND MULTIVARIATE CALCULUS - ASSESSMENT I SECTION C

Question.

(1) Write down the definition of convergence of sequence in terms of quantifiers.

Solution. Let $\left(x_{n}\right)$ be a sequence. We say that $\left(x_{n}\right)$ is convergent if $\exists l \in \mathbb{R}\left(\forall \epsilon>0\left(\exists N \in \mathbb{N}\left(\forall n \geq N\left(\left|x_{n}-l\right|<\epsilon\right)\right)\right)\right)$.
(2) Let $A \subset \mathbb{R}$ be nonempty. Define $-A=\{-x: x \in A\}$. Show that $\sup (-A)=-\inf A$.
Solution. Let $\inf A=\alpha$. Then $\alpha \leq x$ for all $x \in A$.
$\Longrightarrow-x \leq-\alpha$ for all $x \in A$. Hence, $-\alpha$ is an upper bound of $-A$.
Let β be any upper bound of $-A$. Then $-x \leq \beta$ for all $x \in A$.
It follows that $-\beta \leq x$ for all $x \in A$. Hence, $-\beta$ is a lower bound of A.
By definition of infimum, $-\beta \leq \alpha$ or $-\alpha \leq \beta$.

