UNIVARIATE AND MULTIVARIATE CALCULUS - ASSESSMENT I SECTION A

Question. Let A and B be nonempty subsets of real numbers. Show that $\sup(A \cup B) = \max\{\sup A, \sup B\}$.

Solution. Let $\sup A = \alpha$ and $\sup B = \beta$. Then

$$x \le \alpha \text{ for all } x \in A \text{ and } y \le \beta \text{ for all } y \in B.$$
 [1]

$$\implies z \leq \max\{\alpha, \beta\}$$
 for all $z \in A \cup B$. Thus, $\max\{\alpha, \beta\}$ is an upper bound of $A \cup B$. [1]

Let γ be any upper bound of $A \cup B$. Then $z \leq \gamma$ for all $z \in A \cup B$. In particular, $z \leq \gamma$ for all $z \in A$ and $z \leq \gamma$ for all $z \in B$.

$$\implies \alpha \le \gamma \text{ and } \beta \le \gamma \text{ (by definition of supremum)}$$
 [1]

Therefore,
$$\max\{\alpha, \beta\} \leq \gamma$$
. [1]