UNIVARIATE AND MULTIVARIATE CALCULUS - ASSESSMENT I SECTION A

Question. Let A and B be nonempty subsets of real numbers. Show that $\sup (A \cup B)=$ $\max \{\sup A, \sup B\}$.

Solution. Let $\sup A=\alpha$ and $\sup B=\beta$. Then
$x \leq \alpha$ for all $x \in A$ and $y \leq \beta$ for all $y \in B$.
$\Longrightarrow z \leq \max \{\alpha, \beta\}$ for all $z \in A \cup B$. Thus, $\max \{\alpha, \beta\}$ is an upper bound of $A \cup B$.
Let γ be any upper bound of $A \cup B$. Then $z \leq \gamma$ for all $z \in A \cup B$. In particular, $z \leq \gamma$ for all $z \in A$ and $z \leq \gamma$ for all $z \in B$.
$\Longrightarrow \alpha \leq \gamma$ and $\beta \leq \gamma$ (by definition of supremum)
Therefore, $\max \{\alpha, \beta\} \leq \gamma$.

