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Abstract

In this thesis, we propose to study two classes of operators on Banach spaces. One is the

class of ‘local isometries’, and the second is the class of ‘projections’ which are related to

isometries.

In the first part of the thesis, we characterize local isometries on strongly separating

subspaces of C0(X), X being a locally compact Hausdorff space, and weakly normal closed

subalgebras of Cu(KE), the Banach algebra of all real or complex-valued uniformly con-

tinuous bounded functions defined on KE endowed with the supremum norm, where KE

is a closed subset of the Banach space E. We prove that under some conditions on the

subspaces and subalgebras, any local isometry is a global isometry, that is, a surjective

linear isometry. We prove similar results for local isometries on C2[0, 1], the Banach space

of all (real or complex valued) functions that have continuous derivatives f ′, f ′′ on the

closed unit interval [0, 1], equipped with norm ‖f‖ = |f(0)|+ |f ′(0)|+ ‖f ′′‖∞, where ‖ · ‖∞
is the usual supremum norm. We further find out the structure of isometries of finite order

on C2[0, 1], and extend the above results for the class of local isometries of finite order as

well.

In the second part of the thesis, we study norm-one projections on C2[0, 1]. We charac-

terize projections on C2[0, 1] that can be written as convex combination of two surjective

linear isometries. We also determine the structure of Hermitian projections and general-

ized bi-circular projections on C2[0, 1]. At the end, we discuss the relationship of these two

types of projections (Hermitian and generalized bi-circular projections) with the convex

combination of two isometries.
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1
Introduction

In this chapter, we give a brief history and motivation of the problems which we attempt

to study in this thesis. We also introduce few notations and recall some definitions and

results which will be used later. At the end, we provide a chapter-wise summary of the

main results.

1.1 History

The study of transformations preserving lengths and angles has been a central theme in

mathematics for a long time. A transformation which preserves the distance between every

two elements of the space (metric space, normed linear space) is called an isometry. Some

examples of isometries on Euclidean spaces are translations, rotations, and reflections;

another example is the Fourier transform on L2(R). Many properties of an isometric

transformation, like injectivity and continuity etc., can be easily obtained from the distance

preserving criterion. Moreover, if a transformation on a normed linear space is linear, then

being an isometry is equivalent to being norm preserving.

The study of isometries on Banach spaces plays an important role to understand its

structure and geometry. Stefan Banach was the first to raise the question concerning the
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Chapter 1. Introduction

structure of a surjective linear isometry on a specific Banach space. In his treatise [11]

he described the form of isometries on C(X), where X is a compact metric space, and

Lp[0, 1], (1 ≤ p < ∞, p 6= 2). At the same time, researchers began investigating the

isometries of other Banach spaces as well. One of the most classical results in this area

is the Banach-Stone theorem describing surjective linear isometries on C0(X), X being a

locally compact Hausdorff space. This classical theorem has been generalized by many

authors in several directions, for example, by considering into linear isometries, replacing

C0(X) by its subspaces and subalgebras, or by looking into Banach spaces of vector-valued

functions. A comprehensive account of this theory can be found in the monographs by

Behrends [12], and by Fleming and Jamison [27, 28].

Another class of transformations which is crucial in understanding the structure of a

Banach space is the class of projections. Simple examples of projections on Euclidean

spaces are idempotent matrices. A standard result of linear algebra says that every diago-

nalizable matrix can be decomposed as a linear sum of idempotent matrices. The spectral

theory of operators demonstrates that projections appear as basic building blocks of more

complicated operators. Attempt to describe projections with desired properties (for ex-

ample, norm-one projections) has received lot of attention in past as well as in recent

times.

One of the problems posed by Banach [11] about projections is whether every Banach

space E admits a non-trivial projection? A non-trivial projection here means a projection

P on E such that dim P (E) = ∞ and dim E/P (E) = ∞. This question was answered

negatively by Gowers and Maurey in 1993 [31]. We note that any Banach space can

be equivalently renormed so that the given projection has norm one. Intensive studies

were carried out by researchers in the last century to characterize norm-one projections

on classical Banach spaces. The survey article by Randrianantoanina [50] is an excellent

reference for numerous results on norm-one projections.
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1.2. Motivation

1.2 Motivation

Let E be a Banach space. We respectively denote by B(E) and G(E), the Banach space

of all bounded linear operators, and the set of all surjective linear isometries, on E. Let

T ∈ B(E) such that for every x ∈ E, Tx coincides with the action of a surjective linear

isometry on x, that is, there exists a Tx ∈ G(E) (depending on x, that is why the subscript

x and this isometry may vary from point to point) such that T (x) = Tx(x). One may ask

under what conditions T ∈ G(E). Such a T is called a local surjective isometry and we say

that T interpolates G(E). We observe here that any local surjective isometry is in fact an

isometry. Indeed, ||T (x)|| = ||Tx(x)|| = ||x||. So, the problem reduces to see whether any

local surjective isometry is surjective?

Since any injective linear map on a finite dimensional vector space is surjective, the

problem stated in the previous paragraph has a positive answer in the case of finite di-

mensional Banach spaces. Now, let E be an infinite dimensional Hilbert space, and T be

any into isometry on E. Let x, y ∈ E such that Tx = y. As ||x|| = ||y||, there exists

an operator S ∈ G(E) such that S(x) = y. Therefore, T is a local surjective isometry on

E which is not surjective. Thus, the problem has a negative answer if the space under

consideration is an infinite dimensional Hilbert space.

It is, therefore, a natural question to ask what happens in other infinite dimensional

Banach spaces. This is a very basic problem in the sense that we want to get a global

conclusion from a local hypothesis.

Besides the isometry group, the above problem can be studied for other important

classes of transformations on operator algebras like automorphism group and derivations.

The problem then would be to see whether any local automorphism (derivation) is an

automorphism (a derivation). Investigations of this kind were initiated by Kadison, Larson

and Sourour [38, 41, 42]. The book by Molnár [47] is a pertinent reference for the study

of local maps on operator algebras and function algebras.

We consider the following definition.

3



Chapter 1. Introduction

Definition 1.2.1. Let S ⊂ B(E). We define the algebraic closure of S as

Sa = {T ∈ B(E) : Tx ∈ Sx, ∀ x ∈ E},

where Sx = {Sx : S ∈ S}.

Clearly, S ⊆ Sa. The subset S is called algebraically reflexive if S = Sa.

Elements of the algebraic closure of S are called local maps. It is clear that S is

algebraically reflexive if for every map T that belongs locally to S, we necessarily have

T ∈ S.

If S = G(E), then G(E) is called algebraically reflexive if G(E) = G(E)
a
, that is, ev-

ery local surjective isometry is surjective. We recall that a local isometry is an isometry.

From the preceding discussion, we see that, if E is finite dimensional, then G(E) is alge-

braically reflexive, and if E is an infinite dimensional Hilbert space, then G(E) fails to be

algebraically reflexive.

A natural setting for studying the algebraic reflexivity of the isometry group of a Banach

space is where a complete description is available. This is the case in most of the well known

Banach spaces. In the last decades, a lot of work has been done in this direction, see for

instance [22, 37, 44, 45, 49] and [51]. In [44], Molnár and Zalar proved that G(c0) and

G(`p) (1 ≤ p ≤ ∞, p 6= 2) are algebraically reflexive. In the same paper it was also proved

that, for a first countable compact Hausdorff space X, G(C(X)) is algebraically reflexive.

Similar results were extended in [23] to other classical Banach spaces, such as spaces of

measurable functions, Hardy spaces, Banach algebras of holomorphic functions.

A surjective linear isometry T ∈ B(E) is called an isometry of finite order if there

exists n ∈ N such that T n = I, where I denotes the identity operator on E. For n ∈ N, let

Gn(E) = {T ∈ G(E) : T n = I}. An operator T ∈ Gn(E) is called an isometry of order n.

Dutta and Rao [25] proved that for a compact Hausdorff space Ω, if G(C(X)) is algebraically

reflexive, then G2(C(X)) is also algebraically reflexive. This result was generalized in [5] to

isometries of order n on C0(X,E), where X is a first countable locally compact Hausdorff

space, and E is a Banach space having the strong Banach-Stone property.
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1.3. Research objectives

Let α1, α2, . . . , αn be nonzero complex numbers, and T1, T2, . . . , Tn be operators in

B(E). It is a natural question to ask when P = α1T1 + α2T2 + · · · + αnTn is a pro-

jection? This question has been partially answered by several authors recently. In [2], the

authors proved that if T is an operator of order n, i.e., T n = I, then P =
∑n−1

i=0 αiT
i is a

projection if and only if (α0, α1, . . . , αn−1) is the inverse discrete Fourier transform of δS,

for some S ⊆ {0, 1, . . . , n− 1}, where δS is the vector with components given by δS(i) = 1

for i ∈ S and δS(i) = 0 otherwise. Botelho [16] studied the properties of operators that

are in the convex hull of a finite set of surjective isometries on the space C(X), where X is

a compact connected Hausdorff topological space. The same problem has been studied for

other Banach spaces, like minimal norm ideals, spaces of analytic functions, Hardy spaces,

absolutely continuous function spaces, etc., see [1, 20, 21, 32, 34] and [40].

Definition 1.2.2. A projection P on a Banach space E is said to be a generalized bi-

circular projection if there exists an α ∈ T \ {1} such that P +α(I −P ) is an isometry on

E. Here, T denotes the unit circle in the complex plane.

The notion of generalized bi-circular projections was introduced in 2007 by Fošner,

Ilǐsević, and Li [30]. In [30], the authors characterized generalized bi-circular projections

on finite dimensional Banach spaces with respect to various G-invariant norms. After

that, this class of projections were extensively studied by several authors for many Banach

spaces, see for example, [18, 33, 43], and the references therein.

It was shown in [43] that any generalized bi-circular projection is bicontractive, i.e., a

projection P such that ||P || = ||I − P || = 1. Moreover, any projection on a Hilbert space

is a generalized bi-circular projections if and only if it is an orthogonal projection (see [19,

Proposition 3.1]).

1.3 Research objectives

In this thesis, we propose to study two classes of operators on Banach spaces. One is the

class of ‘local isometries’, and the second is the class of ‘projections’ which are related to

isometries.
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Chapter 1. Introduction

For a Banach space E and a closed subset KE of E, we denote by Cu(KE) the Banach

algebra of all real or complex-valued, uniformly continuous bounded functions defined on

KE endowed with the supremum norm.

Definition 1.3.1. Let A be a subspace of C0(X). We say that A is strongly separating if

given any pair of distinct points x1, x2 of X, there exists f ∈ A such that |f(x1)| 6= |f(x2)|.

Definition 1.3.2. A closed subalgebra Au(KE) of Cu(KE) is said to be weakly normal if

given any subsets A and B of KE with a positive distance d(A,B) = inf{||a − b|| : a ∈

A, b ∈ B}, there is an f ∈ Au(KE) such that |f(x)| ≥ 1 for every x ∈ A, and |f(y)| ≤ 1
2

for every y ∈ B.

For a weakly normal closed subalgebra Au(KE) of Cu(KE), we denote by A0
u(KE) the

subalgebra of Au(KE) whose elements vanishes at 0 ∈ KE, that is,

A0
u(KE) = {f ∈ Au(KE) : f(0) = 0}.

In the first part of the thesis, we study the problem of algebraically reflexivity of the

following sets:

1. The set of all surjective linear isometries between strongly separating subspaces of

C0(X).

2. The set of all surjective linear isometries between weakly normal closed subalgebras

of Cu(KE).

3. The set of all surjective linear isometries between subalgebras of Au(KE) whose

elements vanish at 0.

4. The group of all surjective linear isometries on the space of 2-times continuously

differentiable functions.

5. The set of all surjective linear isometries of finite order on the space of 2-times

continuously differentiable functions.

6



1.4. Preliminaries and basic results

The remaining part of the thesis is focussed in studying projections on the space of

2-times continuously differentiable functions.

Definition 1.3.3. An operator T ∈ B(X) is said to be Hermitian if eiθT is an isometry

for every θ ∈ R.

Hermitian operators on various complex Banach spaces were investigated by many

authors, see for example [13, 14, 15, 17] and [26].

On the space of 2-times continuously differentiable functions, we attempt to address

the following problems:

1. Characterize projections that can be written as convex combination of two surjective

linear isometries.

2. Find out the structure of Hermitian and generalized bi-circular projections.

3. Study the relationship of Hermitian and generalized bi-circular projections with the

convex combination of two isometries.

1.4 Preliminaries and basic results

In this section, we introduce some notations and recall some definitions and results that

will be used throughout this thesis.

We shall assume E and F to be Banach spaces. We respectively denote by B(E,F )

and G(E,F ), the Banach space of all bounded linear operators, and the set of all surjective

linear isometries, from E to F . If E = F , then B(E,E) is denoted by B(E), and G(E,E)

by G(E).

Let K denotes the field of real or complex numbers. We denote by C0(X), the space

of all K-valued continuous functions on a locally compact Hausdorff space X vanishing at

infinity. We recall that a continuous function f : X → K is said to vanish at infinity if for

all ε > 0, the set {x ∈ X : |f(x)| ≥ ε} is compact.

7



Chapter 1. Introduction

Definition 1.4.1. Let A be a subspace of C0(X). A subset U of X is said to be a boundary

for A if each function in A attains its maximum on U . The Shilov boundary of A, denoted

∂A, is the unique minimal closed boundary for A.

The structure of into and onto linear isometries of a strongly separating subspace of

C0(X) into C0(Y ) are given in the next two theorems.

Theorem 1.4.2. [9, Theorem 3.1] Let T be a linear isometry of a strongly separating linear

subspace A of C0(X) into C0(Y ). Then there are a subset Y0 of Y , which is a boundary

for T (A), a continuous map h from Y0 onto σ0A and a continuous map a : Y0 → K, such

that |a(y)| = 1 for all y ∈ Y0, and

Tf(y) = a(y)f(h(y)) for all y ∈ Y0 and all f ∈ A.

Furthermore, if σ0A is compact, then Y0 is closed.

Theorem 1.4.3. [9, Theorem 4.1] Let T be a linear isometry of a strongly separating linear

subspace A of C0(X) onto such a subspace B of C0(Y ). Then there exist a homeomorphism

h of σ0B onto σ0A and a continuous map a : σ0B → K, such that |a(y)| = 1 for all y ∈ σ0B,

and

Tf(y) = a(y)f(h(y)) for all y ∈ σ0B and all f ∈ A.

The next two theorems characterize surjective linear isometries on the subalgebras

Au(KE) and A0
u(KE) of Cu(KE).

Theorem 1.4.4. [10, Theorem 4.3] Let X and Y be Banach spaces and let T : Au(KX)→

Au(KY ) be a linear surjective isometry. Then there exist a uniform homeomorphism h

of KY onto KX , and a function a ∈ Cu(KY ), such that |a(y)| = 1 for all y ∈ KY , and

Tf(y) = a(y)f(h(y)) for all y ∈ KY and for all f ∈ Au(KX).

Theorem 1.4.5. [10, Theorem 4.8] Let X and Y be Banach spaces and let T : A0
u(KX)→

A0
u(KY ) be a linear surjective isometry. Then there exists a uniform homeomorphism h

8



1.4. Preliminaries and basic results

of KY onto KX with h(0) = 0. Furthermore, there is a function a ∈ C(KY \ {0}), with

|a(y)| = 1 for all y ∈ KY \ {0}, such that, for all f ∈ A0
u(KX)

Tf(y) =

a(y)f(h(y)), y ∈ KY \ {0},

0, y = 0.

For each nonnegative integer r, let Cr[0, 1] be the space of all (real or complex valued)

functions that have continuous derivatives f (1), f (2), . . . , f (r) of order upto r on the closed

unit interval [0, 1]. Let

||f || =
r−1∑
i=0

|f (i)(0)|+ ||f (r)||∞,

where || · ||∞ denotes the usual supremum norm. The space Cr[0, 1] is a Banach space with

the norm || · ||. For r = 0, Cr[0, 1] is simply denoted by C[0, 1], the space of all (real or

complex valued) continuous functions on [0, 1] with the supremum norm. Moreover, we

shall denote the first and second derivatives of f by f ′ and f ′′, respectively.

The structure of surjective linear isometries on Cr[0, 1] is given in the next theorem.

Define a map ζ : C[0, 1]→ C1[0, 1] by (ζf)(x) =
∫ x
0
f(s)ds. It is clear by the fundamental

theorem of calculus that (ζf)′(x) = f(x) for every x ∈ [0, 1].

Theorem 1.4.6. [39, Theorem 1.1] Let T be linear operator from (Cr[0, 1], ‖·‖) onto itself.

Then T is an isometry if and only if there exist a homeomorphism φ of [0, 1] onto itself,

a unimodular continuous function ω on [0, 1], a permutation {τ(0), τ(1), . . . , τ(r − 1)} of

{0, 1, . . . , r − 1} and unimodular constants λ0, λ1, . . . , λr−1 such that

Tf(x) =
r−1∑
i=0

λif
(τ(i))(0)

i!
xi + (ζr(ω(f (r) ◦ φ)))(x).

The next theorem is simply a statement of the above theorem for the space C2[0, 1].

Let T denotes the unit circle in the complex plane.

Theorem 1.4.7. A surjective linear operator T : C2[0, 1]→ C2[0, 1] is an isometry if and

only if there exist a homeomorphism φ : [0, 1]→ [0, 1], a continuous function ω : [0, 1]→ T

and constants λ, µ ∈ T such that either

Tf(x) = λf(0) + µf ′(0)x+ (ζ2(ω(f ′′ ◦ φ)))(x), (?)

9



Chapter 1. Introduction

or

Tf(x) = λf ′(0) + µf(0)x+ (ζ2(ω(f ′′ ◦ φ)))(x). (??)

Remark 1.4.8. An isometry of the form (?) will be referred as an isometry of the first

type. Similarly, an isometry of the form (??) will be referred as an isometry of the second

type.

Definition 1.4.9. 1. A projection P on a Banach space E is said to be a generalized

bi-circular projection, (GBP, for short), if there exists an α ∈ T \ {1} such that

P + α(I − P ) is an isometry on E.

2. A projection P on a Banach space E is said to be a bi-circular projection if P +α(I−

P ) is an isometry on E for all α ∈ T.

Remark 1.4.10. If P is a GBP on a Banach space E, then there exist α ∈ T \ {1} and

T ∈ G(E) such that P + α(I − P ) = T . The isometry T will be referred as the isometry

associated with P .

1.5 Outline of the thesis

We now give a chapter-wise summary and statement of the main results proved in this

thesis.

Chapter 2

In this chapter, we investigate the algebraic reflexivity of the set all surjective linear isome-

tries between certain subspaces of C0(X), and between various subalgebras of Cu(KE).

We prove the following results.

Theorem 1.5.1. Let X and Y be locally compact Hausdorff spaces, and let A and B

be strongly separating linear subspaces of C0(X) and C0(Y ) respectively. If there exists

a nonnegative real-valued injective function g ∈ A and σ0A is compact, then G(A,B) is

algebraically reflexive.
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Proposition 1.5.2. Let E and F be Banach spaces. If there exists an injective map

g ∈ Au(KE) such that g(x) ≥ 1 for all x ∈ KE, then G(Au(KE), Au(KF )) is algebraically

reflexive.

Proposition 1.5.3. Let E and F be Banach spaces. If there exists a nonnegative real-

valued injective function g ∈ A0
u(KE), then G(A0

u(KE), A0
u(KF )) is algebraically reflexive.

Chapter 3

In this chapter, we establish the algebraic reflexivity of the group of isometries on C2[0, 1].

We also find out the structure of isometries of finite order on C2[0, 1], and study the

algebraic reflexivity of the collection of all such isometries. The structure of surjective

linear isometries on C2[0, 1] is given in theorem 1.4.7.

The main result of this chapter is the following.

Theorem 1.5.4. G(C2[0, 1]) is algebraically reflexive.

We also prove that

Proposition 1.5.5. If n is odd, then Gn(C2[0, 1]) is algebraically reflexive.

Chapter 4

In chapter 4, we describe projections in the convex hull of two isometries in C2[0, 1]. To

investigate when a convex combination of two isometries on a Banach space is a projection,

we will see that it is enough to consider the average of these isometries.

Let T1, T2 ∈ G(C2[0, 1]). Let us denote the scalars λ, µ and the maps φ, ω associated

with T1 and T2 in Theorem 1.4.7 by λ1, µ1, φ1, ω1 and λ2, µ2, φ2, ω2 respectively. We

prove the following result.

Theorem 1.5.6. Let T1 and T2 be surjective linear isometries on C2[0, 1]. Then P =

1
2
(T1 + T2) is a projection if and only if the following assertions holds:

1. The scalars λi, µi, i = 1, 2, satisfy one of the following conditions

11
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a) λ1 = −λ2 or λ1 = λ2 = 1; µ1 = −µ2 or µ1 = µ2 = 1.

b) λ1 = µ1 = 1 and λ2µ2 = 1;

2. Every x ∈ [0, 1] satisfies one of the following statements

a) x = φ1(x) = φ2(x) and ω1(x) = ω2(x) = 1.

b) φ1(x) = φ2(x) and ω1(x) = −ω2(x).

c) For i, j = 1, 2, i 6= j, x = φi(x) 6= φj(x), φ2
j(x) = x, φi ◦ φj(x) = φj(x),

ωi(x) = ωi(φj(x)) = 1 and ωj(x)ωj(φj(x)) = 1.

We also characterize generalized bi-circular projections and Hermitian projections in

the following two results.

Theorem 1.5.7. An operator P on C2[0, 1] is a generalized bi-circular projection if and

only if one of the following assertions holds:

1. If the isometry T associated with P is of the first type, then either

a) P = I+T
2

, λ = ±1, µ = ±1, and for every x ∈ [0, 1], ω(x)ω(φ(x)) = 1, φ2(x) =

x, or

b) P is Hermitian. In this case, λ = α or 1, µ = α or 1.

2. If the isometry T associated with P is of the second type, then P = I+T
2

, λµ = 1, and

for every x ∈ [0, 1], ω(x)ω(φ(x)) = 1, φ2(x) = x.

Corollary 1.5.8. A projection P on C2[0, 1] is Hermitian if and only if there exist real con-

stants a, b and c such that Pf(x) = af(x)+bf(0)+cf ′(0)x for all f ∈ C2[0, 1] and x ∈ [0, 1],

where (a, b, c) ∈ {(1,−1,−1), (1,−1, 0), (1, 0,−1), (1, 0, 0), (0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1)}.

In the end of this chapter, we prove that

Theorem 1.5.9. The average of two surjective linear isometries T1 and T2 on C2[0, 1] is a

projection P if and only if either P is Hermitian or P = I+T
2

, for some isometric reflection

T .
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Chapter 5

Finally, chapter 5 discusses the conclusion of the work done, and proposes some research

problems for future work.
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2
Local isometries on subspaces and

subalgebras of function spaces

In this chapter, we study the structure of local isometries on subspaces of C0(X), and

various subalgebras of Cu(KE). Our results reply on the assumption that these subspaces

and subalgebras support an injective function.

The results of this chapter are from [8].

2.1 Local isometries on strongly separating subspaces of

C0(X)

In this section, we prove that any local isometry on strongly separating subspaces of C0(X)

is a surjective isometry. In other words, we prove that the set of all surjective linear

isometries on strongly separating subspaces of C0(X) is algebraically reflexive.

Remark 2.1.1. Let us define the sets

σA = {x0 ∈ X : for each neighbourhood U of x0, ∃ f ∈ A such that |f(x)| ≤ ‖f‖, ∀ x ∈

X − U}, and σ0A = σA ∩ {x ∈ X : ∃ f ∈ A with f(x) 6= 0}. It is known that if A is a
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subspace of C0(X), then ∂A = σA [9, Lemma 2.1].

Our main result is the following.

Theorem 2.1.2. Let X and Y be locally compact Hausdorff spaces, and let A and B

be strongly separating linear subspaces of C0(X) and C0(Y ) respectively. If there exists

a nonnegative real-valued injective function g ∈ A and σ0A is compact, then G(A,B) is

algebraically reflexive.

Proof. Let T ∈ G(A,B)
a
. Since T is an into isometry, Theorem 1.4.2 implies that there

exist a subset Y0 of Y , a continuous onto map h : Y0 → σ0A and a continuous map

τ : Y0 → K, such that |τ(y)| = 1 ∀ y ∈ Y0, and

Tf(y) = τ(y)f(h(y)), ∀ y ∈ Y0 and f ∈ A. (2.1.1)

To prove the surjectivity of T we will show that h is a homeomorphism and Y0 = σ0B.

First we show that h is injective. For the map g given in the hypothesis, there exists Tg ∈

G(A,B) such that Tg = Tgg. Theorem 1.4.3 implies the existence of a homeomorphism

hg : σ0B → σ0A and a continuous map τg : σ0B → K, such that |τg(y)| = 1 ∀ y ∈ σ0B,

and

Tg(y) = τg(y)g(hg(y)), ∀ y ∈ σ0B. (2.1.2)

From the proof of Theorem 1.4.3 we know that Y0 ⊆ σ0B. Now, Equations (2.1.1)

and (2.1.2) imply that g(h(y)) = g(hg(y)), ∀ y ∈ Y0. Thus, h = hg on Y0 and hence h is

injective. Using [48, Theorem 26.6] we conclude that h is a homeomorphism.

It remains to prove that σ0B ⊆ Y0. Indeed, for y ∈ σ0B, we have hg(y) ∈ σ0A. As h is

onto, there exists y0 ∈ Y0 such that h(y0) = hg(y). But h = hg on Y0, therefore, y = y0.

This completes the proof.

2.2 Local isometries on various subalgebras of Cu(KE)

In this section, we prove the algebraic reflexivity of the set of all surjective linear isometries

on weakly normal subalgebras of Cu(KE) and on the subalgebra A0
u(KE).

The following remark is crucial in our proofs.
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Remark 2.2.1. 1. The closed subalgebras Au(KE) and A0
u(KE) can be identified re-

spectively with closed subalgebras A(E) and A0(E) of C(γE), where γE is a com-

pactification of KE defined as the quotient space γE := βKE/R. Here, βKE is

the Stone-Cech compactification of KE, and R is the equivalence relation defined as

x1Rx2 if f(x1) = f(x2) for every f ∈ Au(KE). It is known that A(E) and A0(E)

separate strongly the points of γE. Moreover, KE ⊆ ∂A(E) and ∂A(E) = γE. Fur-

thermore, KE \ {0} ⊆ ∂A0(E) and ∂A0(E) \ {0} = γE \ {0}. More details can be

found in [10].

2. We also note that A(E) is a uniform algebra, that is, a closed separating subalgebra

of C(γE) which contains the constants. This means that A(E) is nowhere vanishing,

that is, for every ξ ∈ γE, there exists f ∈ A(E) such that f(ξ) 6= 0. It follows from

Remark 2.1.1 that

σ0A(E) = σA(E) ∩ {ξ ∈ γE : ∃ f ∈ A(E) with f(ξ) 6= 0}

= ∂A(E) ∩ γ(E) (since A(E) is nowhere vanishing)

= ∂A(E)

= γE.

3. Further, since A0(E) strongly separates points of γE, for ξ ∈ γE such that ξ 6= 0,

there exists an f ∈ A0(E) such that |f(ξ)| 6= |f(0)|. Since f(0) = 0, we have

|f(ξ)| 6= 0, and hence, f(ξ) 6= 0. Therefore, {ξ ∈ γE : ∃ f ∈ A0(E) with f(ξ) 6=

0} = γE \ {0}. This implies that σ0A0(E) = γE \ {0}.

Proposition 2.2.2. Let E and F be Banach spaces. If there exists an injective map

g ∈ Au(KE) such that g(x) ≥ 1 for all x ∈ KE, then G(Au(KE), Au(KF )) is algebraically

reflexive.

Proof. Let T ∈ G(Au(KE), Au(KF ))
a
. Using Remark 2.2.1 and Theorem 2.1.2, we conclude

that T is a surjective linear isometry between closed subalgebras A(E) and A(F ) of C(γE)

and C(γF ) respectively. Theorem 1.4.3 implies the existence of a homeomorphism h :

17
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γF → γE and a continuous map τ : γF → K, such that |τ(y)| = 1 for all y ∈ γF , and

Tf(y) = τ(y)f(h(y)), ∀ y ∈ γF and f ∈ A(E). (2.2.1)

In order to prove that T : Au(KE) → Au(KF ) is a surjective linear isometry we need to

show that h : KF → KE is a uniform homeomorphism and µ = τ |KF
∈ Cu(KF ).

For the first part, considering the map g given in the hypothesis, there exits Tg ∈

G(Au(KE), Au(KF )) such that Tg = Tgg. Now, Theorem 1.4.4 implies the existence of a

uniform homeomorphism hg : KY → KX and a function τg ∈ Cu(KF ), such that |τg(y)| = 1

for all y ∈ KF , and

Tg(y) = τg(y)g(hg(y)), ∀ y ∈ KF . (2.2.2)

Comparing Equations (2.2.1) and (2.2.2) and using the injectivity of g we conclude that

h = hg on KF . Thus, h is a uniform homeomorphism.

To prove the second part, suppose on the contrary that µ is not uniformly continuous on

KF . Then there exist ε > 0 and two sequences (xn) and (yn) in KF such that limn→∞ ||xn−

yn|| = 0 and |µ(xn)− µ(yn)| ≥ ε for every n ∈ N.

As Tg is uniformly continuous, limn→∞(Tg(xn)− Tg(yn)) = 0 or

lim
n→∞

(µ(xn)g(h(xn))− µ(yn)g(h(yn))) = 0. (2.2.3)

Similarly for the map g2 we will have

lim
n→∞

(µ(xn)g2(h(xn))− µ(yn)g2(h(yn))) = 0. (2.2.4)

Multiplying Equation (2.2.3) by g(h(xn)) we get

lim
n→∞

(µ(xn)g2(h(xn))− µ(yn)g(h(xn))g(h(yn))) = 0. (2.2.5)

Subtracting Equations (2.2.4) and (2.2.5) we will get

lim
n→∞

(µ(yn)g2(h(yn))− µ(yn)g(h(xn))g(h(yn))) = 0.

This implies that

lim
n→∞

(g(h(xn))− g(h(yn))) = 0. (2.2.6)
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Lastly multiplying Equation (2.2.6) by µ(xn) and subtracting Equation (2.2.3) we get

lim
n→∞

g(h(yn))(µ(xn)− µ(yn)) = 0.

This is a contradiction. Hence, µ is uniformly continuous on KF and the proof is complete.

Proposition 2.2.3. Let E and F be Banach spaces. If there exists a nonnegative real-

valued injective function g ∈ A0
u(KE), then G(A0

u(KE), A0
u(KF )) is algebraically reflexive.

Proof. Let T ∈ G(A0
u(KE), A0

u(KF ))
a
. Using the same arguments of Proposition 2.2.2,

there exist a homeomorphism h : γF \{0} → γE\{0} and a continuous map τ : γF \{0} →

K, such that |τ(y)| = 1 for all y ∈ γF \ {0}, and

Tf(y) = τ(y)f(h(y)), ∀ y ∈ γF \ {0} and f ∈ A0(E). (2.2.7)

Since τ |KF \{0} ∈ C(KF \ {0}), in order to prove that T : A0
u(KE)→ A0

u(KF ) is a surjective

linear isometry we just need to show that h : KF → KE is a uniform homeomorphism with

h(0) = 0.

For the map g in the hypothesis, there exists Tg ∈ G(A0
u(KE), A0

u(KF )) such that Tg =

Tgg. Theorem 1.4.5 implies the existence of a uniform homeomorphism hg : KF → KE

with hg(0) = 0 and a function τg ∈ C(KF \ {0}), with |τg(y)| = 1 for all y ∈ KF \ {0},

such that

Tg(y) =

τg(y)g(hg(y)), y ∈ KF \ {0},

0, y = 0.

(2.2.8)

From Equations (2.2.7) and (2.2.8) we get h = hg on KF \{0} implying that h is a uniform

homeomorphism of KF \ {0} onto KE \ {0}. The map h can be extended to a uniform

homeomorphism of KF onto KE by defining h(0) = 0. This completes the proof.
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3
Local isometries on C2[0, 1]

In this chapter, we investigate the structure of local isometries on C2[0, 1], the Banach space

of all functions that have continuous derivatives f ′, f ′′ on the closed unit interval [0, 1],

equipped with norm ‖f‖ = |f(0)| + |f ′(0)| + ‖f ′′‖∞, where ‖ · ‖∞ is the usual supremum

norm. We further characterize isometries of finite order, and study the structural properties

of local isometries of finite order, on the space C2[0, 1].

We recall that an isometry on a Banach space E is of finite order if there exists n ∈ N

such that T n = I, where I denotes the identity operator on E. For n ∈ N, let Gn(E) =

{T ∈ G(E) : T n = I}.

The content of this chapter is entirely taken from [6].

Remark 3.0.1. Let T : C2[0, 1]→ C2[0, 1] be a local isometry, i.e., T ∈ G(C2[0, 1])
a
.

1. For every f ∈ C2[0, 1], there exists Tf ∈ G(C2[0, 1]) such that Tf = Tff . An

application of Theorem 1.4.7 imply the existence of a homeomorphism φf : [0, 1] →

[0, 1], a continuous function ωf : [0, 1] → T and constants λf , µf ∈ T such that Tf

will be either an isometry of the first type (form (?)) or an isometry of the second
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type ( (??)). That is,

Tf(x) = Tff(x) = λff(0) + µff
′(0)x+ (ζ2(ωf (f

′′ ◦ φf )))(x), (3.0.1)

or

Tf(x) = Tff(x) = λff
′(0) + µff(0)x+ (ζ2(ωf (f

′′ ◦ φf )))(x). (3.0.2)

2. In this chapter, we will use the fact stated here in point (1) again and again. To avoid

repetition, we will write the expressions of the local isometry given in equations (3.0.1)

and (3.0.2) without mentioning the details of the maps φf , ωf and the constants λf ,

µf . It will be understood from the subscript f in φf , ωf and λf , µf that they are

related to the function f and the isometry Tf .

3. We will also compute Tf(x) and (Tf)′(x) at x = 0 for various functions. In this

case, Equations (3.0.1) and (3.0.2) imply that Tf(0) = λff(0), (Tf)′(0) = µff
′(0)

or Tf(0) = λff
′(0), (Tf)′(0) = µff(0). Moreover, (Tf)′′ = (Tff)′′ = ωf (f

′′ ◦ φf ).

The following innocent remark is the key idea in our proof.

Remark 3.0.2. For any T ∈ B(C2[0, 1]) and g ∈ C2[0, 1], it is easy to verify that

Tg(x) = Tg(0) + (Tg)′(0)x+ (ζ2((Tg)′′))(x). (3.0.3)

3.1 Local isometries on C2[0, 1]

In this section, we state and prove the main result of this chapter. For the sake of clarity,

the proof is divided into six steps.

Theorem 3.1.1. G(C2[0, 1]) is algebraically reflexive.

Proof. Let T ∈ G(C2[0, 1])
a

and g ∈ C2[0, 1]. We use Remark 3.0.2 to show that T has

either form (?) or (??) by finding expressions of Tg(0), (Tg)′(0) and (Tg)′′ independent of

g.

We complete the proof in several steps.
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Step I. Define a linear map W : C[0, 1] → C[0, 1] by W (f) = (T (ζ2f))′′. We claim

that W is a local isometry on C[0, 1]. To see this, consider a function f ∈ C[0, 1]. Then

ζ2f = h (say) ∈ C2[0, 1]. Since T is local isometry, then there exists Th ∈ G(C2[0, 1]) such

that Th = Thh. This implies that W (f) = (Th)′′ = (Thh)′′ = ωh(h
′′ ◦φh) = ωh(f ◦φh) (see

point (3) of Remark 3.0.1). Therefore, W is a local isometry. By [44, Theorem 2.2] W is

a surjective linear isometry. Hence, there exist a continuous functions ω : [0, 1]→ T and a

homeomorphism φ : [0, 1]→ [0, 1] such that W (f) = ω(f ◦ φ).

Step II. Let k = ζ2g′′. We observe that k ∈ C2[0, 1] and (Tg)′′ − (Tk)′′ = (Tg −

Tk)′′ = (T (g − k))′′. As T is a local isometry, there exists Tg−k ∈ G(C2[0, 1]) such that

T (g − k) = Tg−k(g − k). This implies that

(T (g − k))′′ = (Tg−k(g − k))′′ = ωg−k((g − k)′′ ◦ φg−k) = 0.

Hence,

(Tg)′′ = (Tk)′′ = (T (ζ2g′′))′′ = W (g′′) = ω(g′′ ◦ φ). (3.1.1)

Step III. There exists Tg ∈ G(C2[0, 1]) such that Tg = Tgg. Computing Tg(x) and

(Tg)′(x) at x = 0, we get the following two cases (point (3) of Remark 3.0.1).

Case 1. Tg(0) = λgg(0), (Tg)′(0) = µgg
′(0).

Case 2. Tg(0) = λgg
′(0), (Tg)′(0) = µgg(0).

Step IV. For the functions f = 1, f = id, there exist T1, Tid in G(C2[0, 1]) respectively

such that T1 = T11, Tid = Tidid. So, we have the following four cases.

Case 3. T1 = λ11, Tid = µidid.

Case 4. T1 = λ11, Tid = λid1.

Case 5. T1 = µ1id, Tid = µidid.

Case 6. T1 = µ1id, Tid = λid1.

Cases 4 and 5 will lead to a contradiction. To see this, we consider Case 4. Let

T1+id ∈ G(C2[0, 1]) such that T (1 + id) = T1+id(1 + id). Indeed, for every x ∈ [0, 1] we

have,

λ1 + λid = T (1)(x) + T (id)(x) = T (1 + id)(x) = λ1+id + µ1+idx,
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a contradiction. Similarly, one can see that Case 5 is also not possible.

Step V. Let f1 = g − g(0)1 and f2 = g − g′(0)id. There exist Tf1 , Tf2 ∈ G(C2[0, 1])

such that Tf1 = Tf1f1 and Tf2 = Tf2f2. Now, using linearity of T we have the following

equations.

Tf1(0) = Tg(0)− g(0)T1(0), (Tf1)
′(0) = (Tg)′(0)− g(0)(T1)′(0) (3.1.2)

and

Tf2(0) = Tg(0)− g′(0)Tid(0), (Tf2)
′(0) = (Tg)′(0)− g′(0)(Tid)′(0). (3.1.3)

Moreover, using Equations (?) and (??) and the local structure of T we get the following

cases.

Case 7. Tf1(0) = 0, (Tf1)
′(0) = µf1g

′(0), Tf2(0) = λf2g(0), (Tf2)
′(0) = 0.

Case 8. Tf1(0) = 0, (Tf1)
′(0) = µf1g

′(0), Tf2(0) = 0, (Tf2)
′(0) = µf2g(0).

Case 9. Tf1(0) = λf1g
′(0), (Tf1)

′(0) = 0, Tf2(0) = λf2g(0), (Tf2)
′(0) = 0.

Case 10. Tf1(0) = λf1g
′(0), (Tf1)

′(0) = 0, Tf2(0) = 0, (Tf2)
′(0) = µf2g(0).

Step VI. In this step, using Equations (3.1.2) and (3.1.3) we consider the cases arose

in steps III, IV and V one by one.

Cases 1 and 3. Tg(0) = λgg(0), (Tg)′(0) = µgg
′(0), T1 = λ11 and T (id) = µidid.

(i) If Case 7 holds, then Equations (3.1.2) and (3.1.3) imply that

λgg(0)− g(0)λ1 = 0, µgg
′(0) = µf1g

′(0), λgg(0) = λf2g(0), µgg
′(0)− g′(0)µid = 0.

Hence, λgg(0) = λ1g(0) and µgg
′(0) = µidg

′(0).

Putting the values of λgg(0) and µgg
′(0) obtained here, and the value of (Tg)′′ from

Equation (3.1.1) in Equation (3.0.3) we get

Tg(x) = Tg(0) + (Tg)′(0)x+ (ζ2((Tg)′′))(x)

= λ1g(0) + µidg
′(0)x+ (ζ2(ω(g′′ ◦ φ)))(x).

(ii) If Case 8 holds, then we have
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λgg(0)− g(0)λ1 = 0, µgg
′(0) = µf1g

′(0), λgg(0) = 0, µgg
′(0)− g′(0)µid = µf2g(0).

Thus, g(0) = 0 and µgg
′(0) = µidg

′(0).

Equations (3.1.1) and (3.0.3) imply that

Tg(x) = Tg(0) + (Tg)′(0)x+ (ζ2((Tg)′′))(x)

= µidg
′(0)x+ (ζ2(ω(g′′ ◦ φ)))(x).

(iii) If Case 9 holds, then

λgg(0)− g(0)λ1 = λf1g
′(0), µgg

′(0) = 0, λgg(0) = λf2g(0), µgg
′(0)− g′(0)µid = 0.

It follows that g′(0) = 0 and λgg(0) = λ1g(0).

As a consequence of Equations (3.1.1) and (3.0.3) we have

Tg(x) = Tg(0) + (Tg)′(0)x+ (ζ2((Tg)′′))(x)

= λ1g(0) + (ζ2(ω(g′′ ◦ φ)))(x).

(iv) If Case 10 holds, then

λgg(0)− g(0)λ1 = λf1g
′(0), µgg

′(0) = 0, λgg(0) = 0, µgg
′(0)− g′(0)µid = µf2g(0).

This implies that g(0) = 0 and g′(0) = 0.

Again, we apply Equations (3.1.1) and (3.0.3) to get

Tg(x) = Tg(0) + (Tg)′(0)x+ (ζ2((Tg)′′))(x) = (ζ2(ω(g′′ ◦ φ)))(x).

It follows from the expressions of T obtained in (i)-(iv) that T ∈ G(C2[0, 1]).

Cases 1 and 6. Tg(0) = λgg(0), (Tg)′(0) = µgg
′(0), T1 = µ1id and T (id) = λid1.

(i) If Case 7 holds, then

λgg(0) = 0, µgg
′(0)− g(0)µ1 = µf1g

′(0), λgg(0)− g′(0)λid = λf2g(0), µgg
′(0) = 0.

This implies that g(0) = 0 and g′(0) = 0.
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(ii) If Case 8 holds, then we have

λgg(0) = 0, µgg
′(0)− g(0)µ1 = µf1g

′(0), λgg(0)− g′(0)λid = 0, µgg
′(0) = µf2g(0).

Whence, g(0) = 0 and g′(0) = 0.

(iii) If Case 9 holds, then

λgg(0) = λf1g
′(0), µgg

′(0)− g(0)µ1 = 0, λgg(0)− g′(0)λid = λf2g(0), µgg
′(0) = 0.

Thus, g(0) = 0 and g′(0) = 0.

(iv) If Case 10 holds, then

λgg(0) = λf1g
′(0), µgg

′(0)− g(0)µ1 = 0, λgg(0)− g′(0)λid = 0, µgg
′(0) = µf2g(0).

Consequently, λgg(0) = λidg
′(0), µgg

′(0) = µ1g(0).

Putting the values of λgg(0) and µgg
′(0) obtained in (i)-(iv), and the value of (Tg)′′ from

Equation (3.1.1), in Equation (3.0.3) we conclude that T ∈ G(C2[0, 1]).

Cases 2 and 3. Tg(0) = λgg
′(0), (Tg)′(0) = µgg(0), T1 = λ11 and T (id) = µidid.

(i) If Case 7 holds, then

λgg
′(0)− g(0)λ1 = 0, µgg(0) = µf1g

′(0), λgg
′(0) = λf2g(0), µgg(0)− g′(0)µid = 0.

Hence, λgg
′(0) = λ1g(0), µgg(0) = µidg

′(0).

(ii) If Case 8 holds, then we have

λgg
′(0)− g(0)λ1 = 0, µgg(0) = µf1g

′(0), λgg
′(0) = 0, µgg(0)− g′(0)µid = µf2g(0).

This implies that g(0) = 0 and g′(0) = 0.

(iii) If Case 9 holds, then

λgg
′(0)− g(0)λ1 = λf1g

′(0), µgg(0) = 0, λgg
′(0) = λf2g(0), µgg(0)− g′(0)µid = 0.

Thus, g(0) = 0 and g′(0) = 0.

(iv) If Case 10 holds, then

λgg
′(0)− g(0)λ1 = λf1g

′(0), µgg(0) = 0, λgg
′(0) = 0, µgg(0)− g′(0)µid = µf2g(0).
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It follows that g(0) = 0 and g′(0) = 0.

Proceeding exactly as above, we get T ∈ G(C2[0, 1]).

Cases 2 and 6. Tg(0) = λgg
′(0), (Tg)′(0) = µgg(0), T1 = µ1id and T (id) = λid1.

(i) If Case 7 holds, then

λgg
′(0) = 0, µgg(0)− g(0)µ1 = µf1g

′(0), λgg
′(0)− g′(0)λid = λf2g(0), µgg(0) = 0.

Whence, g(0) = 0 and g′(0) = 0.

(ii) If Case 8 holds, then we have

λgg
′(0) = 0, µgg(0)− g(0)µ1 = µf1g

′(0), λgg
′(0)− g′(0)λid = 0, µgg(0) = µf2g(0).

It follows that g′(0) = 0 and µgg(0) = µ1g(0).

(iii) If Case 9 holds, then

λgg
′(0) = λf1g

′(0), µgg(0)− g(0)µ1 = 0, λgg
′(0)− g′(0)λid = λf2g(0), µgg(0) = 0.

Thus, g(0) = 0 and λgg
′(0) = λidg

′(0).

(iv) If Case 10 holds, then

λgg
′(0) = λf1g

′(0), µgg(0)− g(0)µ1 = 0, λgg
′(0)− g′(0)λid = 0, µgg(0) = µf2g(0).

As a consequence, we have µgg(0) = µ1g(0), λgg
′(0) = λidg

′(0).

Repeating the above process, we conclude that T ∈ G(C2[0, 1]).

Thus, the proof is complete.

3.2 Structure of isometries of finite order on C2[0, 1]

The structure of finite order isometries on C2[0, 1] is given in the following proposition.

Proposition 3.2.1. T ∈ Gn(C2[0, 1]) if and only if there exist λ, µ ∈ T, a homeomorphism

φ : [0, 1] → [0, 1], and a continuous function ω : [0, 1] → T such that for all f ∈ C2[0, 1]

and x ∈ [0, 1], one of the following cases occurs.
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1. If T is an isometry of the first type, then

λn = µn = 1, ω(x)ω(φ(x))ω(φ2(x)) · · ·ω(φn−1(x)) = 1, φn(x) = x.

2. If T is an isometry of the second type, then n is even and

λ
n
2 µ

n
2 = 1, ω(x)ω(φ(x))ω(φ2(x)) · · ·ω(φn−1(x)) = 1, φn(x) = x.

Proof. We first prove the ‘only if ’ part.

Let T ∈ Gn(C2[0, 1]). We first note that since T ∈ G(C2[0, 1]), ∃ λ, µ ∈ T, a home-

omorphism φ : [0, 1] → [0, 1] and a continuous function ω : [0, 1] → T such that T is of

either form (?) or (??).

Suppose T has the form (?), then T n = I implies that

λnf(0) + µnf ′(0)x +∫ x

0

∫ t

0

ω(s)ω(φ(s))ω(φ2(s)) · · ·ω(φn−1(s))f ′′(φn(s))dsdt = f(x). (3.2.1)

If we put f = 1 in the above equation we get λn = 1. If we differentiate the above equation

and put f = id we get µn = 1. Taking the second derivative of Equation (3.2.1) we have

ω(x)ω(φ(x))ω(φ2(x)) · · ·ω(φn−1(x))f ′′(φn(x)) = f ′′(x).

This implies that

ω(x)ω(φ(x))ω(φ2(x)) · · ·ω(φn−1(x)) = 1, and φn(x) = x.

Now, suppose T has the form (??). We consider the following two cases.

If n is odd, then T n = I will implies that

λ
n+1
2 µ

n−1
2 f ′(0) + λ

n−1
2 µ

n+1
2 f(0)x +∫ x

0

∫ t

0

ω(s)ω(φ(s))ω(φ2(s)) · · ·ω(φn−1(s))f ′′(φn(s))dsdt = f(x).

Considering f = id in the above equation, we get λ
n+1
2 µ

n−1
2 = x, for all x ∈ [0, 1], a

contradiction.
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3.3. Local isometries of finite order on C2[0, 1]

If n is even then

λ
n
2 µ

n
2 f(0) + λ

n
2 µ

n
2 f ′(0)x +∫ x

0

∫ t

0

ω(s)ω(φ(s))ω(φ2(s)) · · ·ω(φn−1(s))f ′′(φn(s))dsdt = f(x).

Putting f = 1 in the above equation we have λ
n
2 µ

n
2 = 1. If we differentiate the above

equation twice we have

ω(x)ω(φ(x))ω(φ2(x)) · · ·ω(φn−1(x))f ′′(φn(x)) = f ′′(x).

It follows that

ω(x)ω(φ(x))ω(φ2(x)) · · ·ω(φn−1(x)) = 1, and φn(x) = x.

For the ‘if ’ part, suppose that assertion (1) holds. Then

T nf(x) = λnf(0) + µnf ′(0)x+

∫ x

0

∫ t

0

ω(s)ω(φ(s))ω(φ2(s)) · · ·ω(φn−1(s))f ′′(φn(s))dsdt

= f(0) + f ′(0) + f(x)− f(0)− f ′(0)

= f(x).

If assertion (2) holds, then we have

T nf(x) = λ
n
2 µ

n
2 f(0) + λ

n
2 µ

n
2 f ′(0)x+

∫ x

0

∫ t

0

ω(s)ω(φ(s))ω(φ2(s)) · · ·ω(φn−1(s))f ′′(φn(s))dsdt

= f(0) + f ′(0) + f(x)− f(0)− f ′(0)

= f(x).

3.3 Local isometries of finite order on C2[0, 1]

We prove that the set Gn(C2([0, 1]) is algebraically reflexive when n is odd. The case when

n is even is discussed at the end of this section in the form of a remark.
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Proposition 3.3.1. If n is odd, then Gn(C2[0, 1]) is algebraically reflexive.

Proof. Let T ∈ Gn(C2[0, 1])
a
. Then by using Theorem 3.1.1, we have T ∈ G(C2[0, 1]).

Theorem 1.4.7 imply the existence of λ, µ ∈ T, a homeomorphism φ : [0, 1] → [0, 1] and

a continuous map ω : [0, 1] → T such that T is either of form (?) or (??). Moreover, for

each f ∈ C2[0, 1], there exists Tf ∈ Gn(C2[0, 1]) such that Tf = Tff . Since n is odd, we

note that Tf will always be of form (?). Furthermore, (Tf)′′(x) = (Tff)′′(x) implies that

ω(x)f ′′(φ(x)) = ωf (x)f ′′(φf (x)). Taking f = x3 we get ω(x) = ωf (x) and φ(x) = φf (x) for

every x ∈ [0, 1]. This implies that

ω(x)ω(φ(x))ω(φ2(x)) · · ·ω(φn−1(x)) = 1 and φn(x) = x.

Now, suppose that T is of form (?). Then computing Tf and (Tf)′ at x = 0 we get

λf(0) = λff(0) and µf ′(0) = µff
′(0). This implies that λ = λf and µ = µf . Therefore,

λn = µn = 1. Hence, T ∈ Gn(C2[0, 1]).

If T is of form (??), then repeating the same calculations yield λf ′(0) = λff(0) and

µf(0) = µff
′(0). Choosing f ∈ C2[0, 1] such that f(0) = 0, f ′(0) 6= 0 will lead to a

contradiction. This completes the proof.

We complete this chapter with the following remark.

Remark 3.3.2. The problem of algebraic reflexivity of Gn(C2[0, 1]) remains open when n

is even. Let T ∈ Gn(C2[0, 1])
a

and f ∈ C2[0, 1] such that f(0) = f ′(0) 6= 0. If T and

Tf are of the same form, then proceeding as we did in Proposition 3.3.1 we can show that

T ∈ Gn(C2[0, 1]). We consider two cases.

1. If T is of form (?) and Tf is of form (??), then λf(0) = λff
′(0) and µf ′(0) = µff(0).

Whence λ = λf and µ = µf . We also have λ
n/2
f µ

n/2
f = 1 but λn = µn = 1 may not be

true. For example, let n = 2, and λ = i, µ = −i.

2. If T is of form (??) and Tf is of form (?), then λf ′(0) = λff(0) and µf(0) = µff
′(0).

This implies that λ = λf and µ = µf . Moreover, λnf = µnf = 1. In this case,

λn/2µn/2 = 1 may not always be true. For example, if n = 2, and λ = 1, µ = −1.
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4
Projections in the convex hull of

isometries on C2[0, 1]

In this chapter, we characterize projections on C2[0, 1] that can be written as a convex

combination of two surjective linear isometries. We also find out the structure of Her-

mitian projections and generalized bi-circular projections on C2[0, 1]. Finally, we discuss

the relationship of these two types of projections (Hermitian and generalized bi-circular

projections) with the convex combination of two isometries.

All the results of this chapter have appeared in [7].

4.1 Projections as a convex combination of two

surjective isometries on C2[0, 1]

To investigate when a convex combination of isometries on a Banach space is a projection,

we observe that it is enough to consider the average of these isometries as shown in the

next lemma.

Lemma 4.1.1. Let T1 and T2 be linear isometries (not necessarily surjective) on a Banach
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space X, and P = α1T1 + α2T2; where α1, α2 > 0, and α1 + α2 = 1. If P is a proper

projection, then α1 = α2 = 1
2
.

Proof. Since P is proper, there exists x 6= 0 such that Px = 0. Thus, α1T1x = −α2T2x.

Since T1, T2 are isometries, taking norms on both sides we get α1 = α2 = 1
2
.

Some notations which will be used in this chapter are given below in the form of a

remark.

Remark 4.1.2. 1. An isometry of the first type (form (?)) will be denoted by F . If we

consider two isometries of the first type, we will denote them by F1 and F2.

2. An isometry of the second type (form (??)) will be denoted by S. Two isometries of

second the type will be denote by S1 and S2.

3. The scalars λ, µ and the maps φ, ω associated with F1 and F2 (S1 and S2, F and S

or a general isometry T1 and T2) will be denoted by λ1, µ1, φ1, ω1 and λ2, µ2, φ2, ω2,

respectively. To avoid any repetition, we will not mention the details of these scalars

and maps in the sequel. They are given in Theorem 1.4.7.

Theorem 4.1.3. Let T1 and T2 be surjective linear isometries on C2[0, 1]. Then P =

1
2
(T1 + T2) is a projection if and only if the following assertions holds:

1. The scalars λi, µi, i = 1, 2, satisfy one of the following conditions

a) λ1 = −λ2 or λ1 = λ2 = 1; µ1 = −µ2 or µ1 = µ2 = 1.

b) λ1 = µ1 = 1 and λ2µ2 = 1;

2. Every x ∈ [0, 1] satisfies one of the following statements

a) x = φ1(x) = φ2(x) and ω1(x) = ω2(x) = 1.

b) φ1(x) = φ2(x) and ω1(x) = −ω2(x).

c) For i, j = 1, 2, i 6= j, x = φi(x) 6= φj(x), φ2
j(x) = x, φi ◦ φj(x) = φj(x),

ωi(x) = ωi(φj(x)) = 1 and ωj(x)ωj(φj(x)) = 1.
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The proof of the theorem follows from the next four lemmas.

Lemma 4.1.4. Let P be the projection on C2[0, 1] such that P = 1
2
(F1 + F2), where

F1, F2 ∈ G(C2[0, 1]). Then λ1 + λ2 = 0 or λ1 = λ2 = 1; µ1 + µ2 = 0 or µ1 = µ2 = 1.

Proof. Since P is a projection we have

1

2
(F1f(x) + F2f(x))

=
1

4
(F1(F1f)(x) + F1(F2f)(x) + F2(F1f)(x) + F2(F2f)(x))

=
1

4

(
λ1(F1f)(0) + µ1(F1f)′(0)x+

∫ x

0

∫ t

0

ω1(s)(F1f)′′(φ1(s))dsdt

+ λ1(F2f)(0) + µ1(F2f)′(0)x+

∫ x

0

∫ t

0

ω1(s)(F2f)′′(φ1(s))dsdt

+ λ2(F1f)(0) + µ2(F1f)′(0)x+

∫ x

0

∫ t

0

ω2(s)(F1f)′′(φ2(s))dsdt

+ λ2(F2f)(0) + µ2(F2f)′(0)x+

∫ x

0

∫ t

0

ω2(s)(F2f)′′(φ2(s))dsdt

)
=

1

4

(
λ21f(0) + µ2

1f
′(0)x+

∫ x

0

∫ t

0

ω1(s)ω1(φ1(s))f
′′(φ2

1(s))dsdt

+ λ1λ2f(0) + µ1µ2f
′(0)x+

∫ x

0

∫ t

0

ω1(s)ω2(φ1(s))f
′′(φ2(φ1(s)))dsdt

+ λ2λ1f(0) + µ2µ1f
′(0)x+

∫ x

0

∫ t

0

ω2(s)ω1(φ2(s))f
′′(φ1(φ2(s)))dsdt

+ λ22f(0) + µ2
2f
′(0)x+

∫ x

0

∫ t

0

ω2(s)ω2(φ2(s))f
′′(φ2

2(s))dsdt

)
.

This implies that

2

(
λ1f(0) + µ1f

′(0)x+

∫ x

0

∫ t

0

ω1(s)f
′′(φ1(s))dsdt

+ λ2f(0) + µ2f
′(0)x+

∫ x

0

∫ t

0

ω2(s)f
′′(φ2(s))dsdt

)
= λ21f(0) + µ2

1f
′(0)x+

∫ x

0

∫ t

0

ω1(s)ω1(φ1(s))f
′′(φ2

1(s))dsdt

+ λ1λ2f(0) + µ1µ2f
′(0)x+

∫ x

0

∫ t

0

ω1(s)ω2(φ1(s))f
′′(φ2(φ1(s)))dsdt

+ λ2λ1f(0) + µ2µ1f
′(0)x+

∫ x

0

∫ t

0

ω2(s)ω1(φ2(s))f
′′(φ1(φ2(s)))dsdt
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+ λ22f(0) + µ2
2f
′(0)x+

∫ x

0

∫ t

0

ω2(s)ω2(φ2(s))f
′′(φ2

2(s))dsdt. (4.1.1)

Now, if we consider the function f = 1, Equation (4.1.1) reduces to

2(λ1 + λ2) = λ21 + 2λ1λ2 + λ22. Thus, λ1 + λ2 = 0 or λ1 + λ2 = 2. Hence, λ1 = −λ2 or

λ1 = λ2 = 1.

Similarly, when f = id, we have 2(µ1 + µ2)x = (µ2
1 + 2µ1µ2 + µ2

2)x. Hence, µ1 + µ2 = 0

or µ1 + µ2 = 2. This implies that µ1 = −µ2 or µ1 = µ2 = 1.

Lemma 4.1.5. Let P be the projection on C2[0, 1] such that P = 1
2
(F + S), where F, S ∈

G(C2[0, 1]). Then λ1 = µ1 = 1 and λ2µ2 = 1.

Proof. P = P 2 implies that

1

2
(Ff(x) + Sf(x))

=
1

2

(
λ1f(0) + µ1f

′(0)x+

∫ x

0

∫ t

0

ω1(s)f
′′(φ1(s))dsdt

+ λ2f
′(0) + µ2f(0)x+

∫ x

0

∫ t

0

ω2(s)f
′′(φ2(s))dsdt

)
=

1

4
(F (Ff)(x) + F (Sf)(x) + S(Ff)(x) + S(Sf)(x))

=
1

4

(
λ1(Ff)(0) + µ1(Ff)′(0)x+

∫ x

0

∫ t

0

ω1(s)(Ff)′′(φ1(s))dsdt

+ λ1(Sf)(0) + µ1(Sf)′(0)x+

∫ x

0

∫ t

0

ω1(s)(Sf)′′(φ1(s))dsdt

+ λ2(Ff)′(0) + µ2(Ff)(0)x+

∫ x

0

∫ t

0

ω2(s)(Ff)′′(φ2(s))dsdt

+ λ2(Sf)′(0) + µ2(Sf)(0)x+

∫ x

0

∫ t

0

ω2(s)(Sf)′′(φ2(s))dsdt

)
=

1

4

(
λ21f(0) + µ2

1f
′(0)x+

∫ x

0

∫ t

0

ω1(s)ω1(φ1(s))f
′′(φ2

1(s))dsdt

+ λ1λ2f
′(0) + µ1µ2f(0)x+

∫ x

0

∫ t

0

ω1(s)ω2(φ1(s))f
′′(φ2(φ1(s)))dsdt

+ λ2µ1f
′(0) + µ2λ1f(0)x+

∫ x

0

∫ t

0

ω2(s)ω1(φ2(s))f
′′(φ1(φ2(s)))dsdt

+ λ2µ2f(0) + µ2λ2f
′(0)x+

∫ x

0

∫ t

0

ω2(s)ω2(φ2(s))f
′′(φ2

2(s)))dsdt

)
. (4.1.2)
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Putting f = 1 in Equation (4.1.2), we get 2(λ1+µ2x) = λ21+µ1µ2x+µ2λ1x+λ2µ2. Solving

this equation for x = 0, 1 we conclude λ1 = µ1 = 1 and λ2µ2 = 1.

Lemma 4.1.6. Let P be the projection on C2[0, 1] such that P = 1
2
(S1 + S2), where

S1, S2 ∈ G(C2[0, 1]). Then λ1 + λ2 = 0 and µ1 + µ2 = 0.

Proof. As P is a projection, we have

1

2
(S1f(x) + S2f(x))

=
1

2

(
λ1f

′0) + µ1f(0)x+

∫ x

0

∫ t

0

ω1(s)f
′′(φ1(s))dsdt

+ λ2f
′(0) + µ2f(0)x+

∫ x

0

∫ t

0

ω2(s)f
′′(φ2(s))dsdt

)
=

1

4
(S1(S1f)(x) + S1(S2f)(x) + S2(S1f)(x) + S2(S2f)(x))

=
1

4

(
λ1(S1f)′(0) + µ1(S1f)(0)x+

∫ x

0

∫ t

0

ω1(s)(S1f)′′(φ1(s))dsdt

+ λ1(S2f)′(0) + µ1(S2f)(0)x+

∫ x

0

∫ t

0

ω1(s)(S2f)′′(φ1(s))dsdt

+ λ2(S1f)′(0) + µ2(S1f)(0)x+

∫ x

0

∫ t

0

ω2(s)(S1f)′′φ2(s))dsdt

+ λ2(S2f)′(0) + µ2(S2f)(0)x+

∫ x

0

∫ t

0

ω2(s)(S2f)′′φ2(s))dsdt

)
=

1

4

(
λ1µ1f(0) + λ1µ1f

′(0)x+

∫ x

0

∫ t

0

ω1(s)ω1(φ1(s))f
′′(φ2

1(s))dsdt

+ λ1µ2f(0) + λ2µ1f
′(0)x+

∫ x

0

∫ t

0

ω1(s)ω2(φ1(s))f
′′(φ2(φ1(s)))dsdt

+ λ2µ1f(0) + µ2λ1f
′(0)x+

∫ x

0

∫ t

0

ω2(s)ω1(φ2(s))f
′′(φ1(φ2(s)))dsdt

+ λ2µ2f(0) + µ2λ2f
′(0)x+

∫ x

0

∫ t

0

ω2(s)ω2(φ2(s))f
′′(φ2

2(s)))dsdt

)
. (4.1.3)

For f = 1, Equation (4.1.3) becomes 2(µ1 + µ2)x = λ1µ1 + λ1µ2 + λ2µ1 + λ2µ2. Whence,

µ1 + µ2 = 0 or λ1 + λ2 = 2x. It follows that µ1 = −µ2.

If f = id we get 2(λ1 + λ2) = (λ1µ1 + λ2µ1 + µ2λ1 + µ2λ2)x. Hence, λ1 + λ2 = 0 or

(µ1 + µ2)x = 2. Therefore, λ1 = −λ2.
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Lemma 4.1.7. Let T1 and T2 be surjective linear isometries on C2[0, 1]. If P = 1
2
(T1 +T2)

is a projection, then every x ∈ [0, 1] satisfies one of the following conditions.

1. x = φ1(x) = φ2(x) and ω1(x) = ω2(x) = 1.

2. φ1(x) = φ2(x) and ω1(x) = −ω2(x).

3. For i, j = 1, 2, i 6= j, x = φi(x) 6= φj(x), φ2
j(x) = x, φi ◦ φj(x) = φj(x), ωi(x) =

ωi(φj(x)) = 1 and ωj(x)ωj(φj(x)) = 1.

Proof. Differentiating twice Equations (4.1.1), (4.1.2) and (4.1.3) we get

2

(
ω1(x)f ′′(φ1(x)) + ω2(x)f ′′(φ2(x))

)
= ω1(x)ω1(φ1(x))f ′′(φ2

1(x)) + ω1(x)ω2(φ1(x))f ′′(φ2(φ1(x)))

+ ω2(x)ω1(φ2(x))f ′′(φ1(φ2(x))) + ω2(x)ω2(φ2(x))f ′′(φ2
2(x)) (4.1.4)

for all f ∈ C2[0, 1] and x ∈ [0, 1]. We consider a partition of the unit interval [0, 1] as

follows:

A1 = {x ∈ [0, 1] : φ1(x) = φ2(x) = x}, A2 = {x ∈ [0, 1] : φ1(x) = x 6= φ2(x)},

A3 = {x ∈ [0, 1] : φ1(x) 6= φ2(x) = x} and A4 = {x ∈ [0, 1] : φ1(x) 6= x, φ2(x) 6= x}.

Let x ∈ A1. Equation (4.1.4) gives 2(ω1(x) +ω2(x)) = 4ω1(x)ω2(x) or ω1(x) = ω2(x) =

1.

Consider x ∈ A2. We observe that x 6= φ1 ◦ φ2(x). We choose a function f ∈ C2[0, 1]

such that f ′′(x) = 1 and f ′′(φ2(x)) = f ′′(φ1 ◦ φ2(x)) = 0, Equation (4.1.4) then reduces to

2ω1(x) = ω1(x)ω1(x) + ω2(x)ω2(φ2(x))f ′′(φ2
2(x)).

If φ2
2(x) = x, then ω1(x) = 1 and ω2(x)ω2(φ2(x)) = 1. If φ2

2(x) 6= x, then we get 2ω1(x) =

ω1(x)ω1(x). This is a contradiction.

On the other hand, choose a function f ∈ C2[0, 1] such that f ′′(φ2(x)) = 1 and f ′′(x) =

0. As a consequence, Equation (4.1.4) becomes 2ω2(x) = ω2(x)+ω2(x)ω1(φ2(x))f ′′(φ1(φ2(x))).

Consequently, φ1 ◦ φ2(x) = φ2(x) and ω1(φ2(x)) = 1.
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The case when x ∈ A3 is similar.

Now, consider x ∈ A4. If φ1(x) = φ2(x), then we choose a function such that

f ′′(φ1(x)) = 1 and f ′′(φ2
1(x)) = f ′′(φ2

2(x)) = 0. Hence, ω1(x) = −ω2(x).

If φ1(x) 6= φ2(x), then by taking an f such that f ′′(φ1(x)) = 1 and f ′′(φ2(x)) =

f ′′(φ2
1(x)) = f ′′(φ1 ◦ φ2(x)) = 0 in Equation (4.1.4) we get

2ω1(x) = ω1(x)ω2(φ1(x))f ′′(φ2(φ1(x))) + ω2(x)ω2(φ2(x))f ′′(φ2
2(x)).

This implies that φ1(x) must be equal to exactly one of the points φ2 ◦ φ1(x) and φ2
2(x).

In either case, we have that 2ω1(x) = ω1(x)ω2(φ1(x)) or 2ω1(x) = ω2(x)ω2(φ2(x)). This is

impossible. Thus, the proof is complete.

Completion of the proof of Theorem 4.1.3. The proof of part (1) of Theorem 4.1.3 follows

from Lemmas 4.1.4, 4.1.5 and 4.1.6. Part (2) follows from Lemma 4.1.7. For the converse

part, suppose assertion (2) holds. Then one can easily prove the following. If assertion

(1)(a) holds, then P = 1
2
(F1 + F2) is a projection. If assertion (1)(b) holds, then P =

1
2
(F + S) is a projection. If λ1 + λ2 = 0 and µ1 + µ2 = 0, then P = 1

2
(S1 + S2) is a

projection.

4.2 Generalized bi-circular and Hermitian projections on

C2[0, 1]

In this section, we give complete description of GBPs and Hermitian projections on C2[0, 1].

The main key to a possible characterization of GBPs on a Banach space is the following

simple lemma.

Lemma 4.2.1. Let X be a Banach space and α ∈ T \ {1}. Then the following are equiva-

lent.

1. T ∈ B(X) such that T 2 − (α + 1)T + αI = 0.

2. There exists a projection P on X such that P + α(I − P ) = T .
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Proof. (1) =⇒ (2) We define P = T−αI
1−α . Then we have P + α(I − P ) = T and

P 2 =
T 2 + α2 − 2αT

(1− α)2

=
(α + 1)T − αI + α2 − 2αT

(1− α)2

=
(1− α)(T − αI)

(1− α)2

= P.

(2) =⇒ (1)

T 2 − (α + 1)T + αI = P + α2(I − P )− (α + 1)[P + α(I − P )] + αI

= −αP + [α2 − α(α + 1)](I − P ) + αI

= 0.

Next, we state a lemma which describes the relation between Hermitian projections

and bi-circular projections.

Lemma 4.2.2. [36, Lemma 2.1] A projection on a Banach space is bi-circular if and only

if it is a Hermitian projection.

Theorem 4.2.3. An operator P on C2[0, 1] is a generalized bi-circular projection if and

only if one of the following assertions holds:

1. If the isometry T associated with P is of the first type, then either

a) P = I+T
2

, λ = ±1, µ = ±1, and for every x ∈ [0, 1], ω(x)ω(φ(x)) = 1, φ2(x) =

x, or

b) P is Hermitian. In this case, λ = α or 1, µ = α or 1.

2. If the isometry T associated with P is of the second type, then P = I+T
2

, λµ = 1, and

for every x ∈ [0, 1], ω(x)ω(φ(x)) = 1, φ2(x) = x.
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Proof. The converse part is clear. Indeed, if assertion 1(a) is holds then P − (I − P ) = T .

This implies that P is a GBP.

If assertion 1(b) holds, then P is again a GBP by Lemma 4.2.2.

If case (2) occurs, then P − (I − P ) = T , which implies that P is a GBP.

For the direct part, let P + α(I − P ) = T for some T ∈ G(C2[0, 1]) and α ∈ T \ {1}.

By Lemma 4.2.1,

T 2f(x)− (1 + α)Tf(x) + αf(x) = 0.

We consider two cases.

Case I. Suppose T is of form (?), then

λ2f(0) + µ2f ′(0)x+

∫ x

0

∫ t

0

ω(s)ω(φ(s))f ′′(φ2(s))dsdt

− (1 + α)

(
λf(0) + µf ′(0)x+

∫ x

0

∫ t

0

ω(s)f ′′(φ(s)) ds dt

)
+ αf(x) = 0. (4.2.1)

For f = 1 Equation (4.2.1) becomes λ2 − (1 + α)λ+ α = 0. Thus, λ = α or 1.

Taking f = id we have µ2x− (1 + α)µx+ αx = 0 which implies that µ = α or 1.

Differentiating Equation (4.2.1) two times

ω(x)ω(φ(x))f ′′(φ2(x))− (1 + α)ω(x)f ′′(φ(x)) + αf ′′(x) = 0. (4.2.2)

Let A = {x ∈ [0, 1] : x 6= φ(x)}. Assume A 6= ∅ and x ∈ A. If x, φ(x) and φ2(x)

are all distinct, then we can choose a function f ∈ C2[0, 1] such that f ′′(x) = 1 and

f ′′(φ(x)) = f ′′(φ2(x)) = 0. So, Equation (4.2.2) gives α = 0 which is a contradiction. If

x = φ2(x), choose f ∈ C2[0, 1] such that f ′′(x) = 1 and f ′′(φ(x)) = 0. Whence, Equation

(4.2.2) reduces to ω(x)ω(φ(x)) + α = 0. On the other hand for f(x) = x2, we have

ω(x)ω(φ(x))− (1 + α)ω(x) + α = 0. Consequently, α = −1 and ω(x)ω(φ(x)) = 1.

On the other hand, if A = ∅, then Equation (4.2.2) reduces to ω2(x)−(1+α)ω(x)+α =

0. This implies that ω(x) = 1 or α. Since the set [0, 1] is connected, ω is constant. Suppose

ω(x) = 1 for all x ∈ [0, 1]. Then for any f ∈ C2[0, 1] and x ∈ [0, 1]

Pf(x) =
(1− α)f(x) + (λ− 1)f(0) + (µ− 1)f ′(0)x

1− α
.
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If λ = µ = α, Pf(x) = f(x)− f(0)− f ′(0)x.

If λ = α, µ = 1, Pf(x) = f(x)− f(0).

If λ = 1, µ = α, Pf(x) = f(x)− f ′(0)x.

If λ = µ = 1, Pf(x) = f(x).

Now, if ω(x) = α for all x ∈ [0, 1]. Then

Pf(x) =
(λ− α)f(0) + (µ− α)f ′(0)x

1− α
.

If λ = µ = α, Pf(x) = 0.

If λ = α, µ = 1, Pf(x) = f ′(0)x.

If λ = 1, µ = α, Pf(x) = f(0).

If λ = µ = 1, Pf(x) = f(0) + f ′(0)x.

In all the above eight forms of the projection P , one can verify that P is Hermitian.

Case II. Suppose T is form (??), then

λµf(0) + λµf ′(0)x+

∫ x

0

∫ t

0

ω(s)ω(φ(s))f ′′(φ2(s))dsdt

− (1 + α)

(
λf ′(0) + µf(0)x+

∫ x

0

∫ t

0

ω(s)f ′′(φ(s)) ds dt

)
+ αf(x) = 0. (4.2.3)

For f = 1 Equation (4.2.3) reduces to λµ−(1+α)µx+α = 0 or λµ = −α. This implies

that α = −1.

If we differentiate Equation (4.2.3) twice we get ω(x)ω(φ(x))f ′′(φ2(x)) = f ′′(x). Thus,

x = φ2(x), and hence ω(x)ω(φ(x)) = 1.

Corollary 4.2.4. A projection P on C2[0, 1] is Hermitian if and only if there exist real

constants a, b and c such that Pf(x) = af(x) + bf(0) + cf ′(0)x for all f ∈ C2[0, 1] and

x ∈ [0, 1], where

(a, b, c) ∈ {(1,−1,−1), (1,−1, 0), (1, 0,−1), (1, 0, 0), (0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1)}.
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4.3 Relationship of generalized bi-circular and Hermitian

projections with average of isometries on C2[0, 1]

The following theorem describes the relationship of GBPs and Hermitian projections with

average of surjective isometries on C2[0, 1].

Theorem 4.3.1. The average of two surjective linear isometries T1 and T2 on C2[0, 1] is a

projection P if and only if either P is Hermitian or P = I+T
2

, for some isometric reflection

T .

Proof. The ‘if ’ part is obvious. For the ‘Only if ’ part, let P = 1
2
(T1 + T2). Consider the

following partition of [0, 1]:

X1 = {x ∈ [0, 1] : x = φ1(x) = φ2(x), ω1(x) = ω2(x) = 1},

X2 = {x ∈ [0, 1] : φ1(x) = φ2(x), ω1(x) = −ω2(x)},

X3 = {x /∈ X1 ∪X2 : φ1(x) = x, φ2
2(x) = x, φ1 ◦ φ2(x) = φ2(x), ω1(x) = ω1(φ2(x)) =

1, ω2(x)ω2(φ2(x)) = 1},

X4 = {x /∈ X1 ∪X2 : φ2(x) = x, φ2
1(x) = x, φ2 ◦ φ1(x) = φ1(x), ω2(x) = ω2(φ1(x)) =

1, ω1(x)ω1(φ1(x)) = 1}.

We consider the following cases.

Case I. Let X1 ∪X2 = [0, 1].

If P = 1
2
(F1 + F2). From Lemma 4.1.4 we have the following four cases:

1. λ1 + λ2 = 0, µ1 + µ2 = 0. In this case, if x ∈ X1, then we have

Pf(x) =
1

2
(F1 + F2)f(x) =

1

2

[
λ1f(0) + µ1f

′(0)x+ (ζ2(ω1(f
′′ ◦ φ1)))(x)

+ λ2f(0) + µ2f
′(0)x+ (ζ2(ω2(f

′′ ◦ φ2)))(x)
]

=
1

2

∫ x

0

∫ t

0

f ′′(s)dsdt+
1

2

∫ x

0

∫ t

0

f ′′(s)dsdt

= f(x)− f(0)− f ′(0)x.
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If x ∈ X2, then

Pf(x) =
1

2
(F1 + F2)f(x) =

1

2

[
λ1f(0) + µ1f

′(0)x+ (ζ2(ω1(f
′′ ◦ φ1)))(x)

+ λ2f(0) + µ2f
′(0)x+ (ζ2(ω2(f

′′ ◦ φ2)))(x)
]

= 0.

2. λ1 + λ2 = 0, µ1 = µ2 = 1. Here, we have

Pf(x) =

f(x)− f(0), x ∈ X1

f ′(0)x, x ∈ X2.

3. λ1 = λ2 = 1, µ1 + µ2 = 0. Thus,

Pf(x) =

f(x)− f ′(0)x, x ∈ X1

f(0), x ∈ X2.

4. λ1 = λ2 = 1, µ1 = µ2 = 1. This implies that

Pf(x) =

f(x), x ∈ X1

f(0) + f ′(0)x, x ∈ X2.

Corollary 4.2.4 implies that P in all the above cases are Hermitian.

If P = 1
2
(S1 + S2), then λ1 + λ2 = 0 and µ1 + µ2 = 0, see Lemma 4.1.6. The projection

in this case will be Hermitian. To be precise,

Pf(x) =

f(x)− f(0)− f ′(0)x, x ∈ X1

0, x ∈ X2.

Case II. Let X1 ∪X2 6= [0, 1]. Define φ : [0, 1]→ [0, 1] as

φ(x) =


x, x ∈ X1 ∪X2

φ2(x), x ∈ X3

φ1(x), x ∈ X4,
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and ω : [0, 1]→ T as ω(x) = ω1(x) + ω2(x)− 1.

We observe that φ is a homeomorphism. Indeed, the continuity of φ1 and φ2 imply that

φ is continuous. Moreover, using conditions of φ1 and φ2 in the sets Xi, i = 1, 2, 3, 4, we can

prove that φ is a bijection. Since [0, 1] is compact, φ is a homeomorphism. Furthermore,

it is also clear that ω is a continuous modulus 1 function.

We will show that there exists an isometry T on C2[0, 1] such that P = T1+T2
2

= I+T
2

.

In particular, P is a GBP.

Let P = 1
2
(F1 + F2). The following cases may occur (see Lemma 4.1.4).

1. λ1 + λ2 = 0, µ1 + µ2 = 0,

2. λ1 + λ2 = 0, µ1 = µ2 = 1,

3. λ1 = λ2 = 1, µ1 + µ2 = 0,

4. λ1 = λ2 = 1, µ1 = µ2 = 1.

Let

(λ, µ) = (−1,−1), (−1, 1), (1,−1) and (1, 1) (4.3.1)

in (1), (2), (3) and (4) above, respectively. For f ∈ C2[0, 1] and x ∈ [0, 1], define

Ff(x) = λf(0) + µf ′(0)x+ (ζ2(ω(f ′′ ◦ φ)))(x).

Suppose Case (1) holds, that is, λ1 + λ2 = 0, µ1 + µ2 = 0 and (λ, µ) = (−1,−1). We

will show that F1 + F2 = I + F .

Let x ∈ X1. Then φ(x) = x and ω(x) = 1. Now,

(I + F )f(x)

2
=

1

2

[
f(x)− f(0)− f ′(0)x+ (ζ2(ω(f ′′ ◦ φ)))(x)

]
= f(x)− f(0)− f ′(0)x.

If x ∈ X2, then φ(x) = x and ω(x) = −1. Thus,

(I + F )f(x)

2
= f(x)− f(0)− f ′(0)x+ (ζ2(ω(f ′′ ◦ φ)))(x) = 0.
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If x ∈ X3, then φ(x) = φ2(x) and ω(x) = ω2(x). Hence,

(F1 + F2)f(x) = λ1f(0) + µ1f
′(0)x+ (ζ2(ω1(f

′′ ◦ φ1)))(x)

+ λ2f(0) + µ2f
′(0)x+ (ζ2(ω2(f

′′ ◦ φ2)))(x)

=

∫ x

0

∫ t

0

f ′′(s)dsdt+

∫ x

0

∫ t

0

ω2(s)f
′′(φ2(s))dsdt

= f(x)− f(0)− f ′(0)x+

∫ x

0

∫ t

0

ω2(s)f
′′(φ2(s))dsdt.

Now,

(I + F )f(x) = f(x)− f(0)− f ′(0)x+ (ζ2(ω(f ′′ ◦ φ)))(x)

= f(x)− f(0)− f ′(0)x+

∫ x

0

∫ t

0

ω2(s)f
′′(φ2(s))dsdt.

This implies that Pf(x) = F1f(x)+F2f(x)
2

= f(x)+Ff(x)
2

for all f ∈ C2[0, 1] and x ∈ [0, 1].

The case when x ∈ X4 is similar.

Proceeding exactly as above, we can show that in Cases (2), (3) and (4), the chosen

values of λ and µ in (4.3.1) will imply that F1+F2

2
= I+F

2
.

Let P = 1
2
(F + S). Lemma 4.1.5 implies that λ1 = µ1 = 1 and λ2µ2 = 1. For

f ∈ C2[0, 1] and x ∈ [0, 1], define

S ′f(x) = λ2f
′(0) + λ2f(0)x+ (ζ2(ω(f ′′ ◦ φ)))(x).

Let x ∈ X1. We have

(F + S)f(x) = f(0) + f ′(0)x+ (ζ2(ω1(f
′′ ◦ φ1)))(x)

+ λ2f
′(0) + λ2f(0)x+ (ζ2(ω2(f

′′ ◦ φ2)))(x)

= 2f(x) + λ2f
′(0)− f(0) + (λ2f(0)− f ′(0))x.

Now,

(I + S ′)f(x) = f(x) + λ2f
′(0) + λ2f(0)x+ (ζ2(ω(f ′′ ◦ φ)))(x)

= 2f(x) + λ2f
′(0)− f(0) + (λ2f(0)− f ′(0))x.
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If x ∈ X2, then

(F + S)f(x) = f(0) + f ′(0)x+ λ2f
′(0) + λ2f(0)x.

Further,

(I + S ′)f(x) = f(x) + λ2f
′(0) + λ2f(0)x− f(x) + f(0) + f ′(0)x

= f(0) + f ′(0)x+ λ2f
′(0) + λ2f(0)x.

For x ∈ X3,

(F + S)f(x) = f(0) + f ′(0)x+

∫ x

0

∫ t

0

f ′′(s)dsdt

+ λ2f
′(0) + λ2f(0)x+

∫ x

0

∫ t

0

ω2(s)f
′′(φ2(s))dsdt

= f(x) + λ2f
′(0) + λ2f(0)x+

∫ x

0

∫ t

0

ω2(s)f
′′(φ2(s))dsdt.

Also,

(I + S ′)f(x) = f(x) + λ2f
′(0) + λ2f(0)x+

∫ x

0

∫ t

0

ω2(s)f
′′(φ2(s))dsdt.

The case of x ∈ X4 is exactly similar.

All these considerations imply that F+S
2

= I+S′

2
.

Let P = 1
2
(S1 +S2). Then λ1 +λ2 = 0 and µ1 +µ2 = 0, see Lemma 4.1.6. By repeating

the above process, it can be easily shown that S1+S2

2
= I+F

2
, where

Ff(x) = −f(0)− f ′(0)x+ (ζ2(ω(f ′′ ◦ φ)))(x).

This completes the proof.
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5
Conclusion, challenges and some

future plans

5.1 Conclusion and challenges

In this thesis, we have worked mainly on two problems. One is the problem of algebraic

reflexivity of set of isometries on some Banach spaces. We have shown that in many

important cases the local maps (isometries in our case) in consideration are all global, i.e.,

they belong to the given class of operators. We observe that we have defined the above

problem for linear algebraic structures only. Moreover, the local maps are also linear. It is

natural to think about the above problems for more general structures.

The second is the problem of characterizing some special classes of norm-one projections

on the space C2[0, 1]. We have also studied the relation between isometries and projections

in this space. Although our proofs in chapter 4 suggest that similar results should be true

for the space Cr[0, 1], the number of cases occurring becomes difficult to handle, especially,

for r ≥ 4. This is also the case if we take projections as a convex combination of 4 isometries

or more. So, a different approach is needed to handle the general case.
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Chapter 5. Conclusion, challenges and some future plans

5.2 Future plans

In this section, we mention some research problems for future work.

5.2.1 Local isometries on subspaces of vector-valued function spaces

The algebraic reflexivity problems discussed for subspaces of C0(X) could asked for certain

subspaces of vector-valued function spaces.

Let C0(X,E) be the Banach space of E-valued continuous functions on X vanishing at

infinity and endowed with the supremum norm ‖.‖∞. We denote by SE = {e ∈ E : ‖e‖ =

1}, the unit sphere of E. For f ∈ C0(X) and e ∈ E, we define the map f ⊗ e : X → E by

(f ⊗ e)(x) = f(x)e. We can easily verify that f ⊗ e ∈ C0(X,E).

Definition 5.2.1. Let A be a subspace of C0(X). We denote by A[A] any subspace of

C0(X,E) which contains the set {f ⊗ e : f ∈ A, e ∈ SE}.

Font [29] characterized the structure of linear isometries of A[A] onto such a subspace

B[B] of C0(Y, F ), where A and B are regular closed subalgebras of C0(X) and C0(Y )

respectively, and E and F are strictly convex Banach spaces. We shall investigate the

algebraic reflexivity problem for the set of all surjective linear isometries between the

subspaces A[A] and B[B] of C0(X,E) and C0(Y, F ) respectively.

5.2.2 Algebraic reflexivity in the non-linear case

One of the simple ideas to generalize the reflexivity problems to the non-linear case is

due to Šemrl [52]. Let A be any mathematical structure, and let E be a given class of

transformations on A. We say that a map φ : A → A belongs 2-locally to E if for any pair

x, y ∈ A, there is an element φ(x,y) of E for which φ(x) = φ(x,y)(x) and φ(y) = φ(x,y)(y).

Adopting the definition of algebraic reflexivity for linear (1-) local maps, we call the class

E algebraically reflexive, if for every map φ that belongs 2-locally to E , we necessarily have

φ ∈ E .

We are interested to study the following problem proposed by Prof. Lajos Molnár.
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5.2.3. Generalized n-circular projections on Banach spaces

Let H be a Hilbert space, and let Bs(H) be the set of all self-adjoint operators on H.

We equip the set Bs(H) with the usual order, i.e., for any A,B ∈ Bs(H), we write A ≤ B

if 〈Ax, x〉 ≤ 〈Bx, x〉 holds for every x ∈ H.

A bijective map Φ : Bs(H) → Bs(H) is called an order-automorphism if it preserves

the order, i.e., A ≤ B ⇐⇒ Φ(A) ≤ Φ(B). The structure of the group of all order-

automorphisms of Bs(H) is characterized in [46]. The problem is to investigate whether

the group of all order-automorphisms of Bs(H) is algebraically reflexive or not.

5.2.3 Generalized n-circular projections on Banach spaces

The notion of generalized bi-circular projection was generalized in [1, 3] as follows.

Definition 5.2.2. A projection P0 on a Banach space E is said to be a generalized n-

circular projection, n ≥ 2, if there exist λ1, λ2, . . . , λn−1 ∈ T \ {1}, λi, i = 1, 2, . . . , n − 1

of finite order and non-trivial projections P1, P2, . . . , Pn−1 on E such that

1. λi 6= λj for i 6= j,

2. P0 ⊕ P1 ⊕ · · · ⊕ Pn−1 = I,

3. P0 + λ1P1 · · ·+ λn−1Pn−1 is a surjective isometry.

Many authors studied generalized 3-circular projections (also called generalized tri-

circular projections) on several Banach spaces, see for example [1, 3, 4, 24] and [35].

A complete characterization of the structure of generalized n-circular projections on

classical Banach spaces seems to be complicated with available techniques. We want to

study this problem for n = 3 or more for some specific spaces, as for example Lp(Ω, E),

1 ≤ p <∞, p 6= 2, where (Ω, µ) is a σ-finite measure space, and E is a separable Banach

space with trivial Lp-structure.
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[17] Botelho, F., Dey, P. and Ilǐsević, D., Hermitian projections on some Banach spaces

and related topics, Linear Algebra Appl. 598 (2020), 92-104.

[18] Botelho, F. and Jamison, J. E., Generalized bi-circular projections on minimal ideals

of operators, Proc. Amer. Math. Soc. 136 (2008), no. 4, 1397-1402.

[19] Botelho, F. and Jamison, J. E., Algebraic reflexivity of sets of bounded operators on

vector valued Lipschitz functions, Linear Algebra Appl. 432 (2010), no. 12, 3337-3342.

[20] Botelho, F. and Jamison, J. E., Projections as averages of isometries on minimal norm

ideals, Linear Algebra Appl. 435 (2011), no. 6, 1344-1355.

52



Bibliography
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