TAYLOR'S THEOREM

(1) Let $f:[a, b] \longrightarrow \mathbb{R}$ and n be a non-negative integer. Suppose that $f^{(n+1)}$ exists on $[a, b]$. Show that f is a polynomial of degree $\leq n$ if $f^{(n+1)}(x)=0$ for all $x \in[a, b]$. Observe that the statement for $n=0$ can be proved by the mean value theorem.
(2) Show that $1+\frac{x}{2}-\frac{x^{2}}{8} \leq \sqrt{1+x} \leq 1+\frac{x}{2}$ for $x>0$.
(3) Show that for $x \in \mathbb{R}$ with $|x|^{5}<\frac{5!}{10^{4}}$, we can replace $\sin x$ by $x-\frac{x^{3}}{6}$ with an error of magnitude less than or equal to 10^{-4}.
(4) Prove the binomial expansion: $(1+x)^{n}=1+n x+\frac{n(n-1)}{2!} x^{2}+\cdots+x^{n}, x \in \mathbb{R}$.
(5) Using Taylor's theorem compute: $\lim _{x \rightarrow 0} \frac{1-\sqrt{1-x^{2}} \cos x}{x^{4}}$.
(6) If $x \in[0,1]$ and $n \in \mathbb{N}$, show that

$$
\left|\ln (1+x)-\left(x-\frac{x^{2}}{2}+\frac{x^{3}}{3}+\cdots+(-1)^{n-1} \frac{x^{n}}{n}\right)\right|<\frac{x^{n+1}}{n+1} .
$$

(7) (a) Let $f:[a, b] \longrightarrow \mathbb{R}$ be such that $f^{\prime \prime}(x) \geq 0$ for all $x \in[a, b]$. Suppose $x_{0} \in[a, b]$. Show that for any $x \in[a, b]$

$$
f(x) \geq f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)
$$

i.e., the graph of f lies above the tangent line to the graph at $\left(x_{0}, f\left(x_{0}\right)\right)$.
(b) Show that $\cos y-\cos x \geq(x-y) \sin x$ for all $x, y \in\left[\frac{\pi}{2}, \frac{3 \pi}{2}\right]$.
(8) (a) Let $f:[a, b] \longrightarrow \mathbb{R}$ be such that $f^{\prime \prime}(x) \geq 0$ for all $x \in[a, b]$. Suppose $x, y \in$ $(a, b), x<y$ and $0<\lambda<1$. Show that

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)
$$

i.e., the chord joining the two points $(x, f(x))$ and $(y, f(y))$ lies above the portion of the graph $\{(z, f(z)): z \in(x, y)\}$.
(b) Show that $\lambda \sin x \leq \sin \lambda x$ for all $x \in[0 ; \pi]$ and $0<\lambda<1$.
(9) Let f be a twice differentiable function on \mathbb{R} such that $f^{\prime \prime}(x) \geq 0$ for all $x \in \mathbb{R}$. Show that if f is bounded then it is a constant function.
(10) Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be such that $f^{\prime \prime \prime}(x)>0$ for all $x \in \mathbb{R}$. Suppose that $x_{1}, x_{2} \in \mathbb{R}$ and $x_{1}<x_{2}$. Show that $f\left(x_{2}\right)-f\left(x_{1}\right)>f^{\prime}\left(\frac{x_{1}+x_{2}}{2}\right)\left(x_{2}-x_{1}\right)$.
(11) Suppose f is a three times differentiable function on $[-1,1]$ such that $f(-1)=0, f(1)=1$ and $f^{\prime}(0)=0$. Using Taylor's theorem show that $f^{\prime \prime \prime}(c) \geq 3$ for some $c \in(-1,1)$.

