TAYLOR'S THEOREM

- (1) Let $f : [a, b] \longrightarrow \mathbb{R}$ and n be a non-negative integer. Suppose that $f^{(n+1)}$ exists on [a, b]. Show that f is a polynomial of degree $\leq n$ if $f^{(n+1)}(x) = 0$ for all $x \in [a, b]$. Observe that the statement for n = 0 can be proved by the mean value theorem.
- (2) Show that $1 + \frac{x}{2} \frac{x^2}{8} \le \sqrt{1+x} \le 1 + \frac{x}{2}$ for x > 0.
- (3) Show that for $x \in \mathbb{R}$ with $|x|^5 < \frac{5!}{10^4}$, we can replace $\sin x$ by $x \frac{x^3}{6}$ with an error of magnitude less than or equal to 10^{-4} .
- (4) Prove the binomial expansion: $(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \dots + x^n, \ x \in \mathbb{R}.$
- (5) Using Taylor's theorem compute: $\lim_{x\to 0} \frac{1-\sqrt{1-x^2}\cos x}{x^4}$.
- (6) If $x \in [0, 1]$ and $n \in \mathbb{N}$, show that

$$\left| \ln(1+x) - \left(x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + (-1)^{n-1} \frac{x^n}{n} \right) \right| < \frac{x^{n+1}}{n+1}.$$

(7) (a) Let $f : [a, b] \longrightarrow \mathbb{R}$ be such that $f''(x) \ge 0$ for all $x \in [a, b]$. Suppose $x_0 \in [a, b]$. Show that for any $x \in [a, b]$

$$f(x) \ge f(x_0) + f'(x_0)(x - x_0)$$

i.e., the graph of f lies above the tangent line to the graph at $(x_0, f(x_0))$.

- (b) Show that $\cos y \cos x \ge (x y) \sin x$ for all $x, y \in [\frac{\pi}{2}, \frac{3\pi}{2}]$.
- (8) (a) Let $f : [a, b] \longrightarrow \mathbb{R}$ be such that $f''(x) \ge 0$ for all $x \in [a, b]$. Suppose $x, y \in (a, b), x < y$ and $0 < \lambda < 1$. Show that

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

i.e., the chord joining the two points (x, f(x)) and (y, f(y)) lies above the portion of the graph $\{(z, f(z)) : z \in (x, y)\}$.

- (b) Show that $\lambda \sin x \leq \sin \lambda x$ for all $x \in [0; \pi]$ and $0 < \lambda < 1$.
- (9) Let f be a twice differentiable function on \mathbb{R} such that $f''(x) \ge 0$ for all $x \in \mathbb{R}$. Show that if f is bounded then it is a constant function.
- (10) Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be such that f'''(x) > 0 for all $x \in \mathbb{R}$. Suppose that $x_1, x_2 \in \mathbb{R}$ and $x_1 < x_2$. Show that $f(x_2) f(x_1) > f'\left(\frac{x_1 + x_2}{2}\right)(x_2 x_1)$.
- (11) Suppose f is a three times differentiable function on [-1, 1] such that f(-1) = 0, f(1) = 1and f'(0) = 0. Using Taylor's theorem show that $f'''(c) \ge 3$ for some $c \in (-1, 1)$.