LOCAL EXTREMA AND POINTS OF INFLECTION

(1) Let $h: \mathbb{R} \longrightarrow \mathbb{R}$ be defined as $h(x)=f(x) g(x)$, where f and g are non-negative functions. Show that h has a local maximum at a if f and g have a local maximum at a.
(2) Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be defined by $f(x)=(\sin x-\cos x)^{2}$. Find the maximum value of f on \mathbb{R}.
(3) Let $f:[-2,0] \longrightarrow \mathbb{R}$ be defined by $f(x)=2 x^{3}+2 x^{2}-2 x-1$. Find the maximum and minimum values of f on $[-2,0]$.
(4) Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be such that $f^{\prime}(x)=14(x-2)(x-3)^{2}(x-4)^{3}(x-5)^{4}$. Find all the points of local maxima and local minima.
(5) Let $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}$ and $f(x)=\sqrt{\left(x-x_{1}\right)^{2}+\left(x-x_{2}\right)^{2}+\cdots+\left(x-x_{n}\right)^{2}}, x \in \mathbb{R}$. Find the point of absolute minimum of the function f.
(6) Find the points of local maxima and local minima of $f: \mathbb{R} \longrightarrow \mathbb{R}$ defined by $f(x)=$ $2 x^{4} e^{-x^{2}}$.
(7) Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be a twice differentiable function with the following properties:
$f(-1)=4, f(0)=2, f(1)=0, f^{\prime}(x)>0$ for $|x|>1, f^{\prime}(x)<0$ for $|x|<1, f^{\prime}(1)=0$, $f^{\prime}(-1)=0, f^{\prime \prime}(x)<0$ for $x<0$ and ${ }^{\prime \prime}(x)>0$ for $x>0$. Sketch the graph of f.
(8) Sketch the graphs of the following functions after finding the intervals of decrease/increase, concavity/convexity, points of local minima/local maxima, points of inflection and asymptotes.
a) $f(x)=\frac{x^{2}+x-5}{x-1}$
b) $f(x)=\frac{2 x^{2}-1}{x^{2}-1}$
c) $f(x)=\frac{x^{2}}{x^{2}+1}$
d) $f(x)=\frac{2 x^{3}}{x^{2}-4}$
e) $f(x)=3 x^{4}-8 x^{3}+12$.

