MEAN VALUE THEOREM

- (1) Find values of the constants a, b and c for which the graphs of the two functions $f(x) = x^2 + ax + b$ and $g(x) = x^3 c, x \in \mathbb{R}$ intersect at the point (1, 2) and the have the same tangent there.
- (2) Let $f, g : \mathbb{R} \longrightarrow \mathbb{R}$ be differentiable. Assume that f(0) = g(0) and $f'(x) \le g'(x), \forall x \in \mathbb{R}$. Show that $f(x) \le g(x)$ for $x \ge 0$.
- (3) Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be differentiable. Assume that $1 \le f'(x) \le 2$ for $x \in \mathbb{R}$ and f(0) = 0. Prove that $x \le f(x) \le 2x$ for $x \ge 0$.
- (4) Use MVT to establish the following inequalities
 - (a) $e^x > 1 + x$, $\forall x \in \mathbb{R}$.
 - (b) $\frac{y-x}{y} < \log \frac{y}{x} < \frac{y-x}{x}$ for 0 < x < y.
 - (c) $\frac{1}{2\sqrt{n+1}} < \sqrt{n+1} \sqrt{n} < \frac{1}{2\sqrt{n}}, \forall n \in \mathbb{N}.$
 - (d) If $e \le a < b$, then $a^b > b^a$. (Hint: Use part (b)).
 - (e) **Bernoullis Inequality:** Let $\alpha > 0$ and $h \ge -1$. Then

$$(1+h)^{\alpha} \leq 1+\alpha h, \text{ for } 0 < \alpha \leq 1,$$

$$(1+h)^{\alpha} > 1+\alpha h, \text{ for } \alpha > 1.$$

- (5) Prove that $\frac{\sin x}{x}$ is strictly decreasing on $(0, \pi/2)$.
- (6) Let $f : [0,1] \longrightarrow \mathbb{R}$ be differentiable such that $|f'(x)| < 1, \forall x \in [0,1]$. Show that f has at most one fixed point.
- (7) Let $f : [0,1] \longrightarrow \mathbb{R}$ be differentiable and f(0) = 0. Suppose that $|f'(x)| \le |f(x)| \ \forall x \in [0,1]$. Show that f = 0.
- (8) Let $f: (0,1] \longrightarrow \mathbb{R}$ be differentiable with |f'(x)| < 1. Define $a_n := f(1/n)$. Show that (a_n) converges.
- (9) Let $f : [a, b] \longrightarrow \mathbb{R}$ be differentiable and $a \ge 0$. Using Cauchy mean value theorem, show that there exist $c_1, c_2 \in (a, b)$ such that $\frac{f'(c_1)}{a+b} = \frac{f'(c_2)}{2c_2}$.