DIFFERENTIABILITY

- (1) Discuss the differentiability of the following functions at x = 0.
 - (a) $f(x) = x^{\frac{1}{3}}$
 - (b) $f(x) = x^2$ for rational x and f(x) = 0 for irrational x.
 - (c) $f(x) = x \sin x \cos \frac{1}{x}$ for $x \neq 0$ and f(0) = 0.
 - (d) Let m, n be positive integers. Define

$$f(x) = \begin{cases} x^n, & x \ge 0\\ x^m, & x < 0. \end{cases}$$

- (2) Give an example of a function $f : \mathbb{R} \longrightarrow \mathbb{R}$ which is differentiable only at x = 1.
- (3) Let $n \in \mathbb{N}$. Define $f : \mathbb{R} \longrightarrow \mathbb{R}$ by $f(x) = x^n$ for $x \ge 0$ and f(x) = 0 if x < 0. For which values of n,
 - (a) is f continuous at 0?
 - (b) is f differentiable at 0?
 - (c) is f' continuous at 0?
 - (d) is f' differentiable at 0?
- (4) Let $f : \mathbb{R} \to \mathbb{R}$ be a function such that $|f(x)| \le x^2$ for all $x \in \mathbb{R}$. Discuss the differentiability of f at 0.
- (5) Find the number of real solutions of the following equations.
 - (a) $2x \cos^2 x + \sqrt{7} = 0.$
 - (b) $x^{17} e^{-x} + 5x + \cos x = 0.$
- (6) Let $P(X) := \sum_{k=0}^{n} a_k X^k$, $n \ge 2$ be a real polynomial. Assume that all roots of P lie in \mathbb{R} . Show that all roots its derivative P'(X) are also real.
- (7) Let a_1, a_2, \ldots, a_n be real numbers such that $a_1 + a_2 + \cdots + a_n = 0$. Show that the polynomial $q(x) = a_1 + 2a_2x + 3a_3x^2 + \cdots + na_nx^{n-1}$ has at least one real root.
- (8) Let $f : [a, b] \longrightarrow \mathbb{R}$ be such that f'''(x) exists for all $x \in [a, b]$. Suppose f(a) = f(b) = f'(a) = f'(b) = 0 Show that the equation f'''(x) = 0 has a solution.
- (9) Let $f : (a, b) \to \mathbb{R}$ be a function. Prove that f is differentiable at x if and only if there exists a (unique) linear map $A : \mathbb{R} \to \mathbb{R}$ such that

$$\lim_{h \to 0} \frac{f(x+h) - f(x) - Ah}{|h|} = 0.$$

(10) (Differentiable Inverse Theorem). Suppose $f: J \to \mathbb{R}$ is a one-one and continuous function. If f is differentiable at c and $f'(c) \neq 0$, then $f^{-1}: f(J) \to J$ is differentiable at f(c) and $(f^{-1})'(f(c)) = \frac{1}{f'(c)}$.