PROPERTIES OF CONTINUOUS FUNCTIONS

(1) Let $f: J \rightarrow \mathbb{R}$ be a strictly monotonic function such that $f(J)$ is an interval. Show that f is continuous.
(2) Let $f:[a, b] \rightarrow[a, b]$ be continuous. Show that f has a fixed point in $[a, b]$, i.e., $\exists c \in[a, b]$ such that $f(c)=c$.
(3) Prove that $x=\cos x$ for some $x \in(0, \pi / 2)$.
(4) Prove that $x e^{x}=1$ for some $x \in(0,1)$.
(5) Is there a continuous function $f: \mathbb{R} \longrightarrow \mathbb{R}$ such that $f(x) \notin \mathbb{Q}$ for $x \in \mathbb{Q}$ and $f(x) \in \mathbb{Q}$ for $x \notin \mathbb{Q}$.
(6) Show that a polynomial of odd degree has at least one real root.
(7) Show that $x^{4}+5 x^{3}-7$ has at least two real roots.
(8) Let $p(X):=a_{0}+a_{1} X+\cdots+a_{n} X^{n}, n$ is even. If $a_{0} a_{n}<0$, show that p has at least two real roots.
(9) Let $f:[a, b] \longrightarrow \mathbb{R}$ be continuous. Show that $f([a, b])=[c, d]$ for some $c, d \in \mathbb{R}$ with $c \leq d$. Can you identify c, d.
(10) Construct a continuous bijection $f:[a, b] \longrightarrow[c, d]$ such that f^{-1} is continuous.
(11) Construct a continuous function from $(0,1)$ onto $[0,1]$. Can such a function be one-one.
(12) Construct a continuous one-one function from $(0,1)$ to $[0,1]$. Can such a function be onto.

