PROPERTIES OF CONTINUOUS FUNCTIONS

- (1) Let $f: J \to \mathbb{R}$ be a strictly monotonic function such that f(J) is an interval. Show that f is continuous.
- (2) Let $f : [a, b] \to [a, b]$ be continuous. Show that f has a fixed point in [a, b], i.e., $\exists c \in [a, b]$ such that f(c) = c.
- (3) Prove that $x = \cos x$ for some $x \in (0, \pi/2)$.
- (4) Prove that $xe^x = 1$ for some $x \in (0, 1)$.
- (5) Is there a continuous function $f : \mathbb{R} \longrightarrow \mathbb{R}$ such that $f(x) \notin \mathbb{Q}$ for $x \in \mathbb{Q}$ and $f(x) \in \mathbb{Q}$ for $x \notin \mathbb{Q}$.
- (6) Show that a polynomial of odd degree has at least one real root.
- (7) Show that $x^4 + 5x^3 7$ has at least two real roots.
- (8) Let $p(X) := a_0 + a_1 X + \dots + a_n X^n$, *n* is even. If $a_0 a_n < 0$, show that *p* has at least two real roots.
- (9) Let $f : [a, b] \longrightarrow \mathbb{R}$ be continuous. Show that f([a, b]) = [c, d] for some $c, d \in \mathbb{R}$ with $c \leq d$. Can you identify c, d.
- (10) Construct a continuous bijection $f:[a,b] \longrightarrow [c,d]$ such that f^{-1} is continuous.
- (11) Construct a continuous function from (0,1) onto [0,1]. Can such a function be one-one.
- (12) Construct a continuous one-one function from (0,1) to [0,1]. Can such a function be onto.