CONTINUITY AND LIMITS

(1) Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be a continuous function such that $f(c)>0$ for some $c \in \mathbb{R}$. Show that there exists an $\epsilon>0$ such that $f(x)>0$ for all $x \in(c-\epsilon, c+\epsilon)$.
(2) Let $f:(-1,1) \rightarrow \mathbb{R}$ be a continuous function such that in every neighborhood of 0 , there exists a point where f takes the value 0 . Show that $f(0)=0$.
(3) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function such that $f(x+y)=f(x)+f(y)$ for all $x, y \in \mathbb{R}$. If f is continuous at 0 , show that f is continuous everywhere.
(4) Discuss the continuity/discontinuity for the following functions
(a) $f: \mathbb{R} \longrightarrow \mathbb{R}$ defined by

$$
f(x)= \begin{cases}3 x+1, & \text { if } x \in \mathbb{Q} \\ x, & \text { otherwise }\end{cases}
$$

(b) $f:[0, \pi] \longrightarrow \mathbb{R}$ defined by

$$
f(x)= \begin{cases}0, & \text { if } x=0 \\ x \sin \frac{1}{x}-\frac{1}{x} \cos \frac{1}{x}, & \text { otherwise }\end{cases}
$$

(5) Let A be a nonempty subset of \mathbb{R} and $f: \mathbb{R} \longrightarrow \mathbb{R}$ defined by $f(x)=\inf \{|x-a|: a \in A\}$. Show that f is continuous on \mathbb{R}.
(6) Let $J=\left\{\frac{1}{n}: n \in \mathbb{N}\right\}$. Show that any function $f: J \longrightarrow \mathbb{R}$ is continuous on J.
(7) A function $f:[a, b] \longrightarrow \mathbb{R}$ is said to be Lipschitz on $[a, b]$ if there exists $L>0$ such that $|f(x)-f(y)| \leq L|x-y|$ for all $x, y \in[a, b]$. Show that any Lipschitz function is continuous.
(8) Let $f, g: \mathbb{R} \longrightarrow \mathbb{R}$ be continuous such that given any two points $x<y$, there exists a point z such that $x<z<y$ and $f(z)=g(z)$. Show that $f(x)=g(x)$ for all x.
(9) Let $f, g: \mathbb{R} \longrightarrow \mathbb{R}$ be continuous. If $f(x)=g(x)$ for $x \in \mathbb{Q}$, then show that $f=g$.
(10) Let $f:[0, \infty) \rightarrow \mathbb{R}$ be given by

$$
f(x)= \begin{cases}1, & \text { if } x=0 \\ 1 / q, & \text { if } x=p / q, \text { where } p, q \in \mathbb{N} \text { and } p, q \text { have no common factors } \\ 0, & \text { if } x \text { is irrational. }\end{cases}
$$

Show that f is continuous at every irrational in $[0, \infty)$.

