PROBLEM SET 03: CAUCHY SEQUENCES AND SUBSEQUENCE

(1) Prove that the sum of two Cauchy sequences is Cauchy.
(2) Prove that the product of two Cauchy sequences is Cauchy.
(3) Let $\left(x_{n}\right)$ be a sequence and let $a>1$. Assume that $\left|x_{k+1}-x_{k}\right|<a^{-k}$ for all $k \in \mathbb{N}$. Show that $\left(x_{n}\right)$ is Cauchy.
(4) Let $\left(x_{n}\right)$ be defined by

$$
x_{n}=\frac{1}{1!}-\frac{1}{2!}+\frac{1}{3!}+\cdots+\frac{(-1)^{n+1}}{n!} .
$$

Show that $\left(x_{n}\right)$ converges.
(5) Show that the sequences $\left(x_{n}\right)$ defined below are Cauchy.
(a) $x_{1}=1, x_{n+1}=\frac{1}{2+x_{n}^{2}}$.
(b) $x_{1}=1, x_{n+1}=\frac{1}{6}\left(x_{n}^{2}+8\right)$.
(c) $x_{1}=\frac{1}{2}, x_{n+1}=\frac{1}{7}\left(x_{n}^{3}+2\right)$.
(d) $x_{1}=a, x_{2}=b, x_{n+2}=\frac{x_{n}+x_{n+1}}{2}$, where a and b are two distinct real numbers.
(e) Let $0<a \leq x_{1} \leq x_{2} \leq b, x_{n+2}=\sqrt{x_{n+1} x_{n}}$.
(6) Show that the following sequences cannot converge.
(a) $x_{n}=1+\frac{1}{3}+\frac{1}{5}+\cdots+\frac{1}{2 n-1}$.
(b) $x_{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}$.
(7) Let $\left(x_{n}\right)$ be a sequence such that $\left|x_{n}\right| \leq \frac{1+n}{1+n+2 n^{2}}$ for all n. Prove that $\left(x_{n}\right)$ is Cauchy.
(8) Show that if a monotone sequence has a convergent subsequence, then it is convergent.
(9) Let $\left(r_{n}\right)$ be an enumeration of all rational numbers in $[0,1]$. Show that $\left(r_{n}\right)$ is not convergent.
(10) (Elaborate version of Bolzano-Weierstrass Theorem) Let $\left(x_{n}\right)$ be a sequence. If $\left(x_{n}\right)$ is bounded above and does not diverge to $-\infty$, then prove that $\left(x_{n}\right)$ has a convergent subsequence. Likewise, if $\left(x_{n}\right)$ is bounded below and does not diverge to ∞, then prove that $\left(x_{n}\right)$ has a convergent subsequence.

