PROBLEM SET 03: CAUCHY SEQUENCES AND SUBSEQUENCE

- (1) Prove that the sum of two Cauchy sequences is Cauchy.
- (2) Prove that the product of two Cauchy sequences is Cauchy.
- (3) Let (x_n) be a sequence and let a > 1. Assume that $|x_{k+1} x_k| < a^{-k}$ for all $k \in \mathbb{N}$. Show that (x_n) is Cauchy.
- (4) Let (x_n) be defined by

$$x_n = \frac{1}{1!} - \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{(-1)^{n+1}}{n!}$$

Show that (x_n) converges.

- (5) Show that the sequences (x_n) defined below are Cauchy.
 - (a) $x_1 = 1, x_{n+1} = \frac{1}{2+x_n^2}.$
 - (b) $x_1 = 1, x_{n+1} = \frac{1}{6}(x_n^2 + 8).$
 - (c) $x_1 = \frac{1}{2}, x_{n+1} = \frac{1}{7}(x_n^3 + 2).$
 - (d) $x_1 = a, x_2 = b, x_{n+2} = \frac{x_n + x_{n+1}}{2}$, where a and b are two distinct real numbers.
 - (e) Let $0 < a \le x_1 \le x_2 \le b$, $x_{n+2} = \sqrt{x_{n+1}x_n}$.
- (6) Show that the following sequences cannot converge.

(a)
$$x_n = 1 + \frac{1}{3} + \frac{1}{5} + \dots + \frac{1}{2n-1}$$
.
(b) $x_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$.

- (7) Let (x_n) be a sequence such that $|x_n| \leq \frac{1+n}{1+n+2n^2}$ for all n. Prove that (x_n) is Cauchy.
- (8) Show that if a monotone sequence has a convergent subsequence, then it is convergent.
- (9) Let (r_n) be an enumeration of all rational numbers in [0, 1]. Show that (r_n) is not convergent.
- (10) (Elaborate version of Bolzano-Weierstrass Theorem) Let (x_n) be a sequence. If (x_n) is bounded above and does not diverge to $-\infty$, then prove that (x_n) has a convergent subsequence. Likewise, if (x_n) is bounded below and does not diverge to ∞ , then prove that (x_n) has a convergent subsequence.