PROBLEM SET 02: SEQUENCES AND THEIR CONVERGENCE

(1) Let $x_{n} \rightarrow \ell$. Show that if we alter a finite number of terms of $\left(x_{n}\right)$, the new sequence still converges to ℓ.
(2) Let $x_{n} \rightarrow \ell$. If $\ell>0$, then show that except for a finite number of terms, all $x_{n}>0$.
(3) Let $x_{n} \leq y_{n}$ for all n such that $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$. Show that $x \leq y$.
(4) True or False:
(a) If $\left(x_{n}\right)$ and $\left(x_{n} y_{n}\right)$ are bounded, then $\left(y_{n}\right)$ is bounded.
(b) If $\left(x_{n}\right)$ and $\left(y_{n}\right)$ are such that $x_{n} y_{n} \rightarrow 0$, then one of the sequences converges to 0 .
(5) In each of the following sequences, write the first following terms of $\left(x_{n}\right)$, and then investigate its convergence.
(a) $x_{n}=\frac{n^{r}}{(1+s)^{n}}$, where $r, s>0$.
(b) $x_{n}=\frac{1}{\sqrt{n^{2}+1}}+\frac{1}{\sqrt{n^{2}+2}} \cdots+\frac{1}{\sqrt{n^{2}+n}}$.
(c) $x_{n}=\frac{n^{2}}{n^{3}+n+1}+\frac{n^{2}}{n^{3}+n+2}+\cdots+\frac{n^{2}}{n^{3}+n+n}$.
(d) $x_{n}=a^{n}(2 n)^{b}$ where $0<a<1$ and $b>1$.
(e) $x_{n}=\left(a^{n}+b^{n}\right)^{1 / n}$ where $0<a<b$.
(f) $x_{n}=n^{\alpha}-(n+1)^{\alpha}$ for some $\alpha \in(0,1)$.
(6) Show that the sequence $\left(x_{n}\right)$ is bounded and monotone, and find its limit where
(a) $x_{1}=1$ and $x_{n+1}=\sqrt{3 x_{n}}$.
(b) $x_{1}=1$ and $x_{n+1}=\frac{4+3 x_{n}}{3+2 x_{n}}$.
(7) Let $M=\sup A \subset \mathbb{R}$. Show that there exists a sequence $\left(x_{n}\right)$ in A such that $x_{n} \rightarrow M$. Prove the analogous result for infimum as well.
(8) Show that the sequence $x_{n}=\sum_{k=1}^{n} \frac{1}{k}$ diverges to ∞.
(9) Let $0<y_{1}<x_{1}$. For $n \geq 2$, define

$$
x_{n+1}=\frac{x_{n}+y_{n}}{2} \text { and } y_{n+1}=\sqrt{x_{n} y_{n}} .
$$

(a) Prove that $\left(y_{n}\right)$ is increasing and bounded above while $\left(x_{n}\right)$ is decreasing and bounded below.
(b) For $n \in \mathbb{N}$, prove that

$$
0<x_{n+1}-y_{n+1}<\frac{1}{2^{n}}\left(x_{1}-y_{1}\right)
$$

(c) Prove $\left(x_{n}\right)$ and $\left(y_{n}\right)$ converges to the same limit.
(10) (Euler's number e) In general, it may not be possible to explicitly find the limit of a convergent sequence. So, some real numbers are defined as the limit of such sequences.

Let $x_{n}=\left(1+\frac{1}{n}\right)^{n}$. Prove that $\left(x_{n}\right)$ is increasing and bounded above. Define $e=$ $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}$. Show that e is irrational.

