- (1) Let $x_n \to \ell$. Show that if we alter a finite number of terms of (x_n) , the new sequence still converges to ℓ .
- (2) Let $x_n \to \ell$. If $\ell > 0$, then show that except for a finite number of terms, all $x_n > 0$.
- (3) Let $x_n \leq y_n$ for all n such that $x_n \to x$ and $y_n \to y$. Show that $x \leq y$.
- (4) True or False:
 - (a) If (x_n) and (x_ny_n) are bounded, then (y_n) is bounded.
 - (b) If (x_n) and (y_n) are such that $x_n y_n \to 0$, then one of the sequences converges to 0.
- (5) In each of the following sequences, write the first following terms of (x_n) , and then investigate its convergence.
 - (a) $x_n = \frac{n^r}{(1+s)^n}$, where r, s > 0.

(b)
$$x_n = \frac{1}{\sqrt{n^2+1}} + \frac{1}{\sqrt{n^2+2}} \dots + \frac{1}{\sqrt{n^2+n}}$$

- (c) $x_n = \frac{n^2}{n^3 + n + 1} + \frac{n^2}{n^3 + n + 2} + \dots + \frac{n^2}{n^3 + n + n}$.
- (d) $x_n = a^n (2n)^b$ where 0 < a < 1 and b > 1.
- (e) $x_n = (a^n + b^n)^{1/n}$ where 0 < a < b.
- (f) $x_n = n^{\alpha} (n+1)^{\alpha}$ for some $\alpha \in (0,1)$.
- (6) Show that the sequence (x_n) is bounded and monotone, and find its limit where
 - (a) $x_1 = 1$ and $x_{n+1} = \sqrt{3x_n}$.

(b)
$$x_1 = 1$$
 and $x_{n+1} = \frac{4+3x_n}{3+2x_n}$.

- (7) Let $M = \sup A \subset \mathbb{R}$. Show that there exists a sequence (x_n) in A such that $x_n \to M$. Prove the analogous result for infimum as well.
- (8) Show that the sequence $x_n = \sum_{k=1}^n \frac{1}{k}$ diverges to ∞ .
- (9) Let $0 < y_1 < x_1$. For $n \ge 2$, define

$$x_{n+1} = \frac{x_n + y_n}{2}$$
 and $y_{n+1} = \sqrt{x_n y_n}$.

- (a) Prove that (y_n) is increasing and bounded above while (x_n) is decreasing and bounded below.
- (b) For $n \in \mathbb{N}$, prove that

$$0 < x_{n+1} - y_{n+1} < \frac{1}{2^n} (x_1 - y_1).$$

- (c) Prove (x_n) and (y_n) converges to the same limit.
- (10) (Euler's number e) In general, it may not be possible to explicitly find the limit of a convergent sequence. So, some real numbers are defined as the limit of such sequences.

Let $x_n = (1 + \frac{1}{n})^n$. Prove that (x_n) is increasing and bounded above. Define $e = \lim_{n \to \infty} (1 + \frac{1}{n})^n$. Show that e is irrational.