TRIPLE INTEGRALS

- (1) Let D denote the solid bounded by the surfaces y = x, $y = x^2$, z = x and z = 0. Evaluate $\iiint y dx dy dz$.
- (2) Let D denote the solid bounded below by the plane z + y = 2, above by the cylinder $z + y^2 = 4$ and on the sides x = 0 and x = 2. Evaluate $\iiint_D x dx dy dz$.
- (3) Suppose $\int_0^4 \int_{\sqrt{x}}^2 \int_0^{2-y} dz dy dx = \iiint_D dx dy dz$ for some region $D \subset \mathbb{R}^3$.
 - (a) Sketch the region D.
 - (b) Sketch the projections of D on the xy, yz and xz planes.
 - (c) Write $\int_0^4 \int_{\sqrt{x}}^2 \int_0^{2-y} dz dy dx$ as iterated integrals of other orders.
- (4) Let $D = \{(x, y, z) \in \mathbb{R}^3 : \frac{x^2}{4} + \frac{y^2}{16} + \frac{z^2}{9} \le 1\}$ and $E = \{(u, v, w) \in \mathbb{R}^3 : u^2 + v^2 + w^2 \le 1\}.$ Show that $\iiint_D dxdydz = \iiint_E 24dudvdw$. (5) In each of the following cases, describe the solid *D* in terms of the cylindrical coordinates.
- - (a) Let D be the solid that is bounded by the paraboloids $z = x^2 + y^2$ and z = $36 - 3x^2 - 3y^2$.
 - (b) Let D be the solid that lies within the cylinder $x^2 + (y-1)^2 = 1$ below the paraboloid $z = x^2 + y^2$ and above the plane z = 0.
 - (c) Let S denote the torus generated by revolving the circle $\{(x, z) : (x 2)^2 + z^2 = 1\}$ about the z-axis. Let D be the solid that is bounded above by the surface S and below by z = 0.
- (6) Let D be the solid that lies inside the cylinder $x^2 + y^2 = 1$, below the cone z = $\sqrt{4(x^2+y^2)}$ and above the plane z=0. Evaluate $\iiint_D x^2 dx dy dz$.
- (7) Evaluate $\int_{-2}^{2} \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} \int_{x^2+y^2}^{4} x dz dy dx$.
- (8) Describe the following regions in terms of the spherical coordinates.
 - (a) The region that lies inside the sphere $x^2 + y^2 + (z-2)^2 = 4$ and outside the sphere $x^2 + y^2 + z^2 = 1.$
 - (b) The region that lies below the sphere $x^2 + y^2 + z^2 = z$ and above the cone z = $\sqrt{x^2 + y^2}$
 - (c) The region that is enclosed by the cone $z = \sqrt{3(x^2 + y^2)}$ and the planes z = 1 and z = 2.
- (9) Let D denote the solid bounded above by the plane z = 4 and below by the cone $z = \sqrt{x^2 + y^2}.$ Evaluate $\iiint_D \sqrt{x^2 + y^2 + z^2} dx dy dz.$ (10) Let *D* denote the solid enclosed by the spheres $x^2 + y^2 + (z-1)^2 = 1$ and $x^2 + y^2 + (z-1)^2 = 1$
- 3. Using spherical coordinates, set up iterated integrals that gives the volume of D.