TRIPLE INTEGRALS

(1) Let D denote the solid bounded by the surfaces $y=x, y=x^{2}, z=x$ and $z=0$. Evaluate $\iiint_{D} y d x d y d z$.
(2) Let D denote the solid bounded below by the plane $z+y=2$, above by the cylinder $z+y^{2}=4$ and on the sides $x=0$ and $x=2$. Evaluate $\iiint_{D} x d x d y d z$.
(3) Suppose $\int_{0}^{4} \int_{\sqrt{x}}^{2} \int_{0}^{2-y} d z d y d x=\iiint_{D} d x d y d z$ for some region $D \subset \mathbb{R}^{3}$.
(a) Sketch the region D.
(b) Sketch the projections of D on the $x y, y z$ and $x z$ planes.
(c) Write $\int_{0}^{4} \int_{\sqrt{x}}^{2} \int_{0}^{2-y} d z d y d x$ as iterated integrals of other orders.
(4) Let $D=\left\{(x, y, z) \in \mathbb{R}^{3}: \frac{x^{2}}{4}+\frac{y^{2}}{16}+\frac{z^{2}}{9} \leq 1\right\}$ and $E=\left\{(u, v, w) \in \mathbb{R}^{3}: u^{2}+v^{2}+w^{2} \leq 1\right\}$. Show that $\iiint_{D} d x d y d z=\iiint_{E} 24 d u d v d w$.
(5) In each of the following cases, describe the solid D in terms of the cylindrical coordinates.
(a) Let D be the solid that is bounded by the paraboloids $z=x^{2}+y^{2}$ and $z=$ $36-3 x^{2}-3 y^{2}$.
(b) Let D be the solid that lies within the cylinder $x^{2}+(y-1)^{2}=1$ below the paraboloid $z=x^{2}+y^{2}$ and above the plane $z=0$.
(c) Let S denote the torus generated by revolving the circle $\left\{(x, z):(x-2)^{2}+z^{2}=1\right\}$ about the z-axis. Let D be the solid that is bounded above by the surface S and below by $z=0$.
(6) Let D be the solid that lies inside the cylinder $x^{2}+y^{2}=1$, below the cone $z=$ $\sqrt{4\left(x^{2}+y^{2}\right)}$ and above the plane $z=0$. Evaluate $\iiint_{D} x^{2} d x d y d z$.
(7) Evaluate $\int_{-2}^{2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} \int_{x^{2}+y^{2}}^{4} x d z d y d x$.
(8) Describe the following regions in terms of the spherical coordinates.
(a) The region that lies inside the sphere $x^{2}+y^{2}+(z-2)^{2}=4$ and outside the sphere $x^{2}+y^{2}+z^{2}=1$.
(b) The region that lies below the sphere $x^{2}+y^{2}+z^{2}=z$ and above the cone $z=$ $\sqrt{x^{2}+y^{2}}$.
(c) The region that is enclosed by the cone $z=\sqrt{3\left(x^{2}+y^{2}\right)}$ and the planes $z=1$ and $z=2$.
(9) Let D denote the solid bounded above by the plane $z=4$ and below by the cone $z=\sqrt{x^{2}+y^{2}}$. Evaluate $\iiint_{D} \sqrt{x^{2}+y^{2}+z^{2}} d x d y d z$.
(10) Let D denote the solid enclosed by the spheres $x^{2}+y^{2}+(z-1)^{2}=1$ and $x^{2}+y^{2}+(z-1)^{2}=$ 3. Using spherical coordinates, set up iterated integrals that gives the volume of D.

