DOUBLE INTEGRALS

(1) Let $R=\left[0, \frac{\pi}{2}\right] \times\left[0, \frac{\pi}{2}\right]$. Evaluate $\iint_{R} \sin x \cos y d x d y$.
(2) Let R be the region in \mathbb{R}^{2} bounded by the curves $y=2 x^{2}$ and $y=1+x^{2}$. Evaluate $\iint_{R}\left(2 x^{2}+y\right) d x d y$
(3) Evaluate the following iterated integrals by interchanging the order of integration.
(a) $\int_{0}^{1} \int_{y}^{1} \cos x^{2} d x d y$
(b) $\int_{0}^{1} \int_{x^{2}}^{1} x^{3} e^{y^{3}} d y d x$.
(4) Find the volume of the solid enclosed by the surfaces $z=6-x^{2}-y^{2}, z=2 x^{2}+y^{2}-1$, $x=-1, x=1, y=-1$ and $y=1$.
(5) Let D be the solid bounded by the cylinder $x^{2}+y^{2}=1$ and the planes $y+z=1$ and $z=0$. Find the volume of D.
(6) Let R be the region in \mathbb{R}^{2} bounded by the straight lines $y=x, y=3 x$ and $x+y=4$. Consider the transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $T(u, v)=(u-v, u+v)$. Find the set $S \subset \mathbb{R}^{2}$ satisfying $T(S)=R$.
(7) Let R be the region in \mathbb{R}^{2} bounded by the curve defined in the polar co-ordinates $r=$ $1-\cos \theta, 0 \leq \theta \leq \pi$ and the x-axis. Consider the transformation $T:[0, \pi] \times[0,1] \rightarrow \mathbb{R}^{2}$ defined by $T(r, \theta)=(r \cos \theta, r \sin \theta)$. Let S be the subset of $[0, \pi] \times[0,1]$ satisfying $T(S)=R$. Sketch the regions S and R.
(8) Using the change of variables $u=x+y$ and $v=x-y$, show that $\int_{0}^{1} \int_{0}^{x}(x-y) d y d x=$ $\int_{0}^{1} \int_{v}^{2-v} \frac{v}{2} d u d v$.
(9) Let R be the region bounded by $x=0, x=1, y=x$ and $y=x+1$. Show that $\iint_{R} \frac{d x d y}{\sqrt{x y-x^{2}}}=\int_{0}^{1} \frac{d u}{\sqrt{u}} \int_{0}^{1} \frac{d v}{\sqrt{v}}$.
(10) Convert $\int_{0}^{1} \int_{x^{2}}^{x} d y d x$ into an iterated integral involving polar coordinates.
(11) Find the volume of the solid in the first octant bounded below by the surface $z=$ $\sqrt{x^{2}+y^{2}}$ and above by $x^{2}+y^{2}+z^{2}=8$ as well as the planes $y=0$ and $y=x$.

