LOCAL EXTREMA AND SADDLE POINTS

(1) Examine the following functions for local maxima, local minima and saddle points.
(a) $x^{2}-y^{2}$.
(b) $x^{4}+y^{4}-2 x^{2}-2 y^{2}+4 x y$.
(c) $x y-x^{2}-y^{2}-2 x-2 y+4$.
(2) Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by $f(x, y)=x y e^{-\left(x^{2}+y^{2}\right)}$ for all $(x, y) \in \mathbb{R}$.
(a) Identify the points of local maxima and minima, and the saddle points.
(b) Show that f is bounded on \mathbb{R}^{2}.
(c) Show that the points of local maxima/minima are the points of absolute maxima/minima.
(3) Find a point on the surface $z=x y+1$ which is nearest to $(0,0,0)$.
(4) Find the points of absolute maximum and absolute minimum of the function $f(x, y)=x^{2}+y^{2}-2 x+2$ on the region $\left\{(x, y): x^{2}+y^{2} \leq 4\right.$ with $\left.y \geq 0\right\}$.
(5) Let $D=\left\{(x, y) \in \mathbb{R}^{2}: x>0\right.$ and $\left.y>0\right\}$ and $f: D \rightarrow \mathbb{R}$ be given by $f(x, y)=$ $x y+\frac{1000}{x}+\frac{1000}{y}$. Find the infimum of the function $f(x, y)$ on D.
(6) Let $f(x, y)=3 x^{4}-4 x^{2} y+y^{2}$. Show that f has a local minimum at $(0,0)$ along every line through $(0,0)$. Does f have a minimum at $(0,0)$? Is $(0,0)$ a saddle point for f ?
(7) Let $D=[-2,2] \times[-2,2]$ and $f: D \rightarrow \mathbb{R}$ be defined as $f(x, y)=4 x y-2 x^{2}-y^{4}$. Find absolute maxima and absolute minima of f in D.

