FTC, RIEMANN SUM AND IMPROPER INTEGRALS

- (1) (a) Show that every continuous function on a closed bounded interval is a derivative.
 - (b) Show that and integrable function on a closed bounded interval need not be a derivative.
- (2) (a) Let $f : [-1,1] \to \mathbb{R}$ be defined by f(x) = 0 for $-1 \le x < 0$ and f(x) = 1 for $0 \le x \le 1$ / Define $F(x) = \int_{-1}^{x} f(t) dt$
 - (i) Sketch the graphs of f and F and observe that f is not continuous; however, F is continuous.
 - (ii) Observe that F is not differentiable at 0.
 - (b) Give an example of a function f on [-1,1] such that f is not continuous at 0 but F(x) defined by $F(x) = \int_{-1}^{x} f(t) dt$ is differentiable at 0.
- (3) Prove that second FTC by assuming the integrand to be continuous.
- (4) Let $f : \mathbb{R} \to \mathbb{R}$ be continuous. Define $g(x) = \int_0^x (x-t)f(t)dt$ for all $x \in \mathbb{R}$. Show that g'' = f.
- (5) Let f be a differentiable function on [0,1]. Show that there exists $c \in (0,1)$ such that $\int_0^1 f(x)dx = f(0) + \frac{1}{2}f'(c)$.
- (6) Let $f: [0,a] \to \mathbb{R}$ be such that f''(x) > 0 for every $x \in [0,a]$. Show that $\int_0^a f(x) dx \ge af(\frac{a}{2})$.
- (7) Let $f, g : [a, b] \to \mathbb{R}$ be integrable functions. Suppose that f is increasing and g is non-negative on [a, b]. Show that there exists $c \in [a, b]$ such that $\int_a^b f(x)g(x)dx = f(b)\int_a^c g(x)dx + f(a)\int_a^b g(x)dx$.
- (8) Show that $\frac{\pi^2}{9} \le \int_{\pi/6}^{\pi/2} \frac{x}{\sin x} \le \frac{2\pi^2}{9}$.
- (9) Let $f:[0,1] \to \mathbb{R}$ be continuous. Show that $\lim_{n\to\infty} \int_0^1 f(x^n) dx = f(0)$.
- (10) Show that $\lim_{n \to \infty} \frac{1}{n^3} \left[\sin \frac{\pi}{n} + 2^2 \sin \frac{2\pi}{n} + \dots + n^2 \sin \frac{n\pi}{n} \right] = \int_0^1 x^2 \sin(\pi x) dx.$
- (11) Let $a_n = \ln\left(\frac{(n!)^{\frac{1}{n}}}{n}\right)^n$ for all $n \in \mathbb{N}$. Convert a_n into a Riemann sum and find $\lim_{n \to \infty} a_n$.
- (12) Let $f:[1,\infty) \to \mathbb{R}$ be defined by $f(x) = \int_1^x \frac{\ln t}{1+t} dt$. Solve the equation $f(x) + f(\frac{1}{x}) = 2$.
- (13) Let $f:[0,\infty) \to \mathbb{R}$ be defined by $f(t) = \frac{(-1)^{n+1}}{n}$ when $t \in [n-1,n), n \in \mathbb{N}$. Show that $\int_0^\infty f(t)dt$ converges but not absolutely.
- (14) Let $f:[1,\infty) \to \mathbb{R}$ be defined by f(n) = 1 for all $n \in N$ and f(x) = 0 if $x \in [1,\infty) \setminus \mathbb{N}$. Then show that
 - (a) $\int_{1}^{\infty} f(t)dt$ converges but $\sum_{n=1}^{\infty} f(n)$ diverges.
 - (b) $\int_{1}^{\infty} (f(t) 1) dt$ diverges but $\sum_{n=1}^{\infty} (f(n) 1)$ converges.
- (15) (a) Let $f: [1, \infty) \to \mathbb{R}$ be such that f(n) = 1 for all $n\mathbb{N}$ and f(t) = 0 otherwise. Show that $\int_{1}^{\infty} f(t)dt$ converges but $f(t) \not\rightarrow 0$ as $t \to \infty$.

- (b) Does there exist a continuous function $f : [1, \infty) \to \mathbb{R}$ such that $\int_1^\infty f(t) dt$ converges but $f(t) \not\rightarrow 0$ as $t \to \infty$?
- (16) Determine the convergence/divergence of the following integrals.
 - (a) $\int_{1}^{\infty} \frac{e^{t}}{4^{t}} dt$ (b) $\int_{1}^{\infty} t \sin t^{4} dt$ (c) $\int_{1}^{\infty} \frac{\sqrt{t}}{e^{\sin t 1}} dt$ (d) $\int_{1}^{\infty} \frac{1 5 \sin 2t}{t^{2} + \sqrt{t}} dt$