FTC, RIEMANN SUM AND IMPROPER INTEGRALS

(1) (a) Show that every continuous function on a closed bounded interval is a derivative.
(b) Show that and integrable function on a closed bounded interval need not be a derivative.
(2) (a) Let $f:[-1,1] \rightarrow \mathbb{R}$ be defined by $f(x)=0$ for $-1 \leq x<0$ and $f(x)=1$ for $0 \leq x \leq 1 /$ Define $F(x)=\int_{-1}^{x} f(t) d t$
(i) Sketch the graphs of f and F and observe that f is not continuous; however, F is continuous.
(ii) Observe that F is not differentiable at 0 .
(b) Give an example of a function f on $[-1,1]$ such that f is not continuous at 0 but $F(x)$ defined by $F(x)=\int_{-1}^{x} f(t) d t$ is differentiable at 0.
(3) Prove that second FTC by assuming the integrand to be continuous.
(4) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous. Define $g(x)=\int_{0}^{x}(x-t) f(t) d t$ for all $x \in \mathbb{R}$. Show that $g^{\prime \prime}=f$.
(5) Let f be a differentiable function on $[0,1]$. Show that there exists $c \in(0,1)$ such that $\int_{0}^{1} f(x) d x=f(0)+\frac{1}{2} f^{\prime}(c)$.
(6) Let $f:[0, a] \rightarrow \mathbb{R}$ be such that $f^{\prime \prime}(x)>0$ for every $x \in[0, a]$. Show that $\int_{0}^{a} f(x) d x \geq$ $a f\left(\frac{a}{2}\right)$.
(7) Let $f, g:[a, b] \rightarrow \mathbb{R}$ be integrable functions. Suppose that f is increasing and g is non-negative on $[a, b]$. Show that there exists $c \in[a, b]$ such that $\int_{a}^{b} f(x) g(x) d x=$ $f(b) \int_{a}^{c} g(x) d x+f(a) \int_{c}^{b} g(x) d x$.
(8) Show that $\frac{\pi^{2}}{9} \leq \int_{\pi / 6}^{\pi / 2} \frac{x}{\sin x} \leq \frac{2 \pi^{2}}{9}$.
(9) Let $f:[0,1] \rightarrow \mathbb{R}$ be continous. Show that $\lim _{n \rightarrow \infty} \int_{0}^{1} f\left(x^{n}\right) d x=f(0)$.
(10) Show that $\lim _{n \rightarrow \infty} \frac{1}{n^{3}}\left[\sin \frac{\pi}{n}+2^{2} \sin \frac{2 \pi}{n}+\cdots+n^{2} \sin \frac{n \pi}{n}\right]=\int_{0}^{1} x^{2} \sin (\pi x) d x$.
(11) Let $a_{n}=\ln \left(\frac{\left(n!\frac{1}{n}\right.}{n}\right)$ for all $n \in \mathbb{N}$. Convert a_{n} into a Riemann sum and find $\lim _{n \rightarrow \infty} a_{n}$.
(12) Let $f:[1, \infty) \rightarrow \mathbb{R}$ be defined by $f(x)=\int_{1}^{x} \frac{\ln t}{1+t} d t$. Solve the equation $f(x)+f\left(\frac{1}{x}\right)=2$.
(13) Let $f:[0, \infty) \rightarrow \mathbb{R}$ be defined by $f(t)=\frac{(-1)^{n+1}}{n}$ when $t \in[n-1, n), n \in \mathbb{N}$. Show that $\int_{0}^{\infty} f(t) d t$ converges but not absolutely.
(14) Let $f:[1, \infty) \rightarrow \mathbb{R}$ be defined by $f(n)=1$ for all $n \in N$ and $f(x)=0$ if $x \in[1, \infty) \backslash \mathbb{N}$. Then show that
(a) $\int_{1}^{\infty} f(t) d t$ converges but $\sum_{n=1}^{\infty} f(n)$ diverges.
(b) $\int_{1}^{\infty}(f(t)-1) d t$ diverges but $\sum_{n=1}^{\infty}(f(n)-1)$ converges.
(15) (a) Let $f:[1, \infty) \rightarrow \mathbb{R}$ be such that $f(n)=1$ for all $n \mathbb{N}$ and $f(t)=0$ otherwise. Show that $\int_{1}^{\infty} f(t) d t$ converges but $f(t) \nrightarrow 0$ as $t \rightarrow \infty$.
(b) Does there exist a continuous function $f:[1, \infty) \rightarrow \mathbb{R}$ such that $\int_{1}^{\infty} f(t) d t$ converges but $f(t) \nrightarrow 0$ as $t \rightarrow \infty$?
(16) Determine the convergence/divergence of the following integrals.
(a) $\int_{1}^{\infty} \frac{e^{t}}{4^{t}} d t$
(b) $\int_{1}^{\infty} t \sin t^{4} d t$
(c) $\int_{1}^{\infty} \frac{\sqrt{t}}{e^{\sin t-1}} d t$
(d) $\int_{1}^{\infty} \frac{1-5 \sin 2 t}{t^{2}+\sqrt{t}} d t$

