RIEMANN INTEGRATION

(1) Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function. Suppose that there is a partition P of $[a, b]$ such that $L(P, f)=U(P, f)$. Show that f is a constant function.
(2) Let $f:[a, b] \rightarrow \mathbb{R}$ be a integrable function and P_{n} be a partition such that $U\left(P_{n}, f\right)-$ $L\left(P_{n}, f\right) \rightarrow 0$. Show that $\lim _{n \rightarrow \infty} U\left(P_{n}, f\right)=\lim _{n \rightarrow \infty} L\left(P_{n}, f\right)=\int_{a}^{b} f(x) d x$.
(3) Let $f:[0,1] \rightarrow \mathbb{R}$ be a function defined as $f(x)=\frac{1}{2^{n}}$, when $\frac{1}{2^{n+1}}<x \leq \frac{1}{2^{n}}(n=$ $0,1,2, \ldots)$ and $f(0)=0$. Show that f is integrable and find its integral value.
(4) Consider $f:[-1,1] \rightarrow \mathbb{R}$ defined by $f(x)=a,-1 \leq x<0, f(0)=0$, and $f(x)=b$, $0<x \leq 1$. Show that f is integrable.
(5) Determine whether the function $f:[0,1] \rightarrow \mathbb{R}$ defined as $f(x)=\sin \frac{1}{x}$, if x is irrational and $f(x)=0$, if x is rational, is Riemann integrable.
(6) Let $f:[a, b] \rightarrow \mathbb{R}$ be a non-negative continuous function such that $\int_{a}^{b} f(x) d x=0$. Show that $f(x)=0$ for all $x \in[a, b]$.
(7) Give an example of an integrable non-negative function f on $[a, b]$ such that $\int_{a}^{b} f(x) d x=0$ but $f(c) \neq 0$ for some $c \in[a, b]$.
(8) Let $f, g:[a, b] \rightarrow \mathbb{R}$ be integrable functions.
(a) Show that $|f|, f^{2}, f g, \max \{f, g\}$ and $\min \{f, g\}$ are integrable.
(b) Show that $\left|\int_{a}^{b} f(x) d x\right| \leq \int_{a}^{b}|f(x)| d x$.
(c) If $f(x) \leq g(x)$ for all $x \in[a, b]$, show that $\int_{a}^{b} f(x) d x \leq \int_{a}^{b} g(x) d x$.
(9) Give an example of a function $f:[a, b] \rightarrow \mathbb{R}$ such that $|f|$ is integrable but f is not integrable.
(10) Give an example of a function $f:[a, b] \rightarrow \mathbb{R}$ such that f^{2} is integrable but f is not integrable.

