RIEMANN INTEGRATION

- (1) Let $f : [a, b] \to \mathbb{R}$ be a bounded function. Suppose that there is a partition P of [a, b] such that L(P, f) = U(P, f). Show that f is a constant function.
- (2) Let $f : [a,b] \to \mathbb{R}$ be a integrable function and P_n be a partition such that $U(P_n, f) L(P_n, f) \to 0$. Show that $\lim_{n \to \infty} U(P_n, f) = \lim_{n \to \infty} L(P_n, f) = \int_a^b f(x) \, dx$.
- (3) Let $f : [0,1] \to \mathbb{R}$ be a function defined as $f(x) = \frac{1}{2^n}$, when $\frac{1}{2^{n+1}} < x \leq \frac{1}{2^n}$ (n = 0, 1, 2, ...) and f(0) = 0. Show that f is integrable and find its integral value.
- (4) Consider $f : [-1,1] \to \mathbb{R}$ defined by $f(x) = a, -1 \le x < 0, f(0) = 0$, and $f(x) = b, 0 < x \le 1$. Show that f is integrable.
- (5) Determine whether the function $f: [0,1] \to \mathbb{R}$ defined as $f(x) = \sin \frac{1}{x}$, if x is irrational and f(x) = 0, if x is rational, is Riemann integrable.
- (6) Let $f: [a,b] \to \mathbb{R}$ be a non-negative continuous function such that $\int_{a}^{b} f(x) dx = 0$. Show that f(x) = 0 for all $x \in [a,b]$.
- (7) Give an example of an integrable non-negative function f on [a, b] such that $\int_{a}^{b} f(x) dx = 0$ but $f(c) \neq 0$ for some $c \in [a, b]$.
- (8) Let $f, g: [a, b] \to \mathbb{R}$ be integrable functions.
 - (a) Show that $|f|, f^2, fg, \max\{f, g\}$ and $\min\{f, g\}$ are integrable.
 - (b) Show that $\left|\int_{a}^{b} f(x) dx\right| \leq \int_{a}^{b} |f(x)| dx$.
- (c) If $f(x) \leq g(x)$ for all $x \in [a, b]$, show that $\int_{a}^{b} f(x) dx \leq \int_{a}^{b} g(x) dx$. (9) Give an example of a function $f : [a, b] \to \mathbb{R}$ such that |f| is integrable but f is not
- (9) Give an example of a function $f : [a, b] \to \mathbb{R}$ such that |f| is integrable but f is not integrable.
- (10) Give an example of a function $f : [a, b] \to \mathbb{R}$ such that f^2 is integrable but f is not integrable.