POWER SERIES

o
(1) For a given Z anz"™, let

n=0

oo
K ={]z|:z € R and Z anz™ is convergent }
n=0

o
be bounded. If r = sup K, then Z anx"
n—
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(a) converges absolutely for all z € R with |z| < r,
(b) diverges for all z € R with |z| > r.
(2) In each of the following cases, determine the radius of convergence and the values of x

for which the power series converges:
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(3) If the power series Z anx" has radius of convergence R, then prove that, for any positive
n=0

o
integer k, Z anx™ has radius of convergence RY*.
n=0
(4) Let f(x) = exp_z% when = # 0 and f(0) = 0. Show that

(a) f'(0) =0.

(b) for z #0,n>1, fM)(z) = P (L) eXp_acL?7 where P, is a polynomial of degree 3n.
(c) f™(0)=0forn=1,2,...

(d) the Maclaurin series of f converges to f(z) only when x = 0.

(5) Show that
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