POWER SERIES

(1) For a given $\sum_{n=0}^{\infty} a_n x^n$, let

$$K = \{|x| : x \in \mathbb{R} \text{ and } \sum_{n=0}^{\infty} a_n x^n \text{ is convergent } \}$$

be bounded. If $r = \sup K$, then $\sum_{n=0}^{\infty} a_n x^n$

- (a) converges absolutely for all $x \in \mathbb{R}$ with |x| < r
- (b) diverges for all $x \in \mathbb{R}$ with |x| > r.
- (2) In each of the following cases, determine the radius of convergence and the values of x for which the power series converges:

(a)
$$\sum_{n=0}^{\infty} \frac{(n+1)x^n}{(n+2)(n+3)};$$

(b)
$$\sum_{n=0}^{\infty} \frac{nx^n}{(n+1)^2}$$
;

(c)
$$\sum_{n=0}^{\infty} \frac{2^n x^n}{n!}$$
;

(d)
$$\sum_{n=0}^{\infty} \frac{(n!)^2 x^{2n}}{(2n)!};$$

(e)
$$\sum_{n=0}^{\infty} \frac{(-1)^{n+1}(x-1)^n}{n}$$

(f)
$$x + \frac{x^2}{2^2} + \frac{2!}{3^3}x^3 + \frac{3!}{4^4}x^4 + \cdots$$

(3) If the power series $\sum_{n=0}^{\infty} a_n x^n$ has radius of convergence R, then prove that, for any positive

integer k, $\sum_{n=0}^{\infty} a_n x^{kn}$ has radius of convergence $R^{1/k}$.

- (4) Let $f(x) = \exp^{-\frac{1}{x^2}}$ when $x \neq 0$ and f(0) = 0. Show that
 - (a) f'(0) = 0.
 - (b) for $x \neq 0$, $n \geq 1$, $f^{(n)}(x) = P_n(\frac{1}{x}) \exp^{-\frac{1}{x^2}}$, where P_n is a polynomial of degree 3n.
 - (c) $f^{(n)}(0) = 0$ for n = 1, 2, ...
 - (d) the Maclaurin series of f converges to f(x) only when x = 0.
- (5) Show that

(a)
$$\tan^{-1}(x) = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots, -1 \le x \le 1$$

(b)
$$\log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots, -1 < x \le 1$$

1