
CONVERGENCE TESTS II: RATIO, ROOT AND LEIBNIZS TESTS

(1) Determine the values of α ∈ R for which
∑∞

n=1(
αn

n+1 )
n converges.

(2) Consider
∑∞

n=1 an, where an > 0 for all n. Prove or disprove the following statements.

(a) If an+1

an
< 1 for all n, then the series converges.

(b) If an+1

an
> 11 for all n, then the series diverges.

(3) Show that the series 1
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63 + · · · converges and that the root test

and ratio test are not applicable.

(4) Consider the rearranged geometric series 1
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64 + · · · . Show

that the series converges by the root test and that the ratio test is not applicable.

(5) (a) If
∑∞

n=1 an and
∑∞

n=1 bn converges absolutely, show that
∑∞

n=1 anbn converges ab-

solutely.

(b) If
∑∞

n=1 an converges absolutely and (bn) is a bounded sequence, show that
∑∞

n=1 anbn

converges absolutely.

(c) Give an example of a convergent series
∑∞

n=1 an and a bounded sequence (bn) such

that
∑∞

n=1 anbn diverges.

(6) n each of the following cases, discuss the convergence/divergence of the series
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