CONVERGENCE TESTS II: RATIO, ROOT AND LEIBNIZS TESTS

- (1) Determine the values of $\alpha \in \mathbb{R}$ for which $\sum_{n=1}^{\infty} (\frac{\alpha n}{n+1})^n$ converges.
- (2) Consider ∑_{n=1}[∞] a_n, where a_n > 0 for all n. Prove or disprove the following statements.
 (a) If a_{n+1}/a_n < 1 for all n, then the series converges.
 - (b) If $\frac{a_{n+1}}{a_n} > 11$ for all n, then the series diverges.
- (3) Show that the series $\frac{1}{1^2} + \frac{1}{2^3} + \frac{1}{3^2} + \frac{1}{4^3} + \frac{1}{5^2} + \frac{1}{6^3} + \cdots$ converges and that the root test and ratio test are not applicable.
- (4) Consider the rearranged geometric series $\frac{1}{2} + 1 + \frac{1}{8} + \frac{1}{4} + \frac{1}{32} + \frac{1}{16} + \frac{1}{128} + \frac{1}{64} + \cdots$. Show that the series converges by the root test and that the ratio test is not applicable.
- (5) (a) If $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ converges absolutely, show that $\sum_{n=1}^{\infty} a_n b_n$ converges absolutely.
 - (b) If $\sum_{n=1}^{\infty} a_n$ converges absolutely and (b_n) is a bounded sequence, show that $\sum_{n=1}^{\infty} a_n b_n$ converges absolutely.
 - (c) Give an example of a convergent series $\sum_{n=1}^{\infty} a_n$ and a bounded sequence (b_n) such that $\sum_{n=1}^{\infty} a_n b_n$ diverges.
- (6) n each of the following cases, discuss the convergence/divergence of the series $\sum_{n=1}^{\infty} a_n$ where a_n equals
 - a) $\frac{n!}{n^n}$ b) $\frac{7^{n+1}}{9^n}$ c) $\frac{n!}{(e)^{n^2}}$ d) $\frac{n^2 2^n}{(2n+1)!}$ e) $(1-\frac{1}{n})^{n^2}$ f) $\frac{n^2}{3^n}(1+\frac{1}{n})^{n^2}$ g) $\sin(\frac{(-1)^n}{n^p}), p > 0$ h) $\frac{1}{2^n-n}$ i) $(-1)^n \frac{(\ln n)^3}{n}$ j) $(-1)^n (n^{\frac{1}{n}}-1)^n$ k) $\frac{2^n+n^2-\ln n}{n!}$ l) $\frac{\cos(\pi n)\ln n}{n}$ m) $(1+\frac{2}{n})^{n^2-\sqrt{n}}$ n) $\frac{n^2(2\pi+(-1)^n)^n}{10^n}$