SERIES

(1) Prove that if a series $\sum_{n=1}^{\infty} a_{n}$ converges, then the sum is unique.
(2) Show that $\sum_{n=1}^{\infty} a_{n}$ converges if and if $\sum_{n=k}^{\infty} a_{n}$ converges for any $k \in \mathbb{N}$.
(3) Let $\left(a_{n}\right)$ be any sequence of real numbers. Show that this sequence converges to a number S if and only if the series

$$
a_{1}+\sum_{n=2}^{\infty}\left(a_{n}-a_{n-1}\right)
$$

converges and has sum S. Verify the convergence/divergence of the following series:
(a) $\sum_{n=1}^{\infty} \frac{4}{(4 n-3)(4 n+1)}$.
(b) $\sum_{n=1}^{\infty} \frac{2 n+1}{n^{2}(n+1)^{2}}$.
(4) Let $\sum_{n=1}^{\infty} a_{n}$ converges and $a_{n}>0$ for all n. If $\left(a_{n_{k}}\right)$ is a subsequence of $\left(a_{n}\right)$, show that $\sum_{k=1}^{\infty} a_{n_{k}}$ also converges.
(5) Let $\sum_{n=1}^{\infty} a_{n}$ be a convergent series. Show that for every $\epsilon>0$, there exists $N \in \mathbb{N}$ such that $\sum_{n=N+1}^{\infty} a_{n}<\epsilon$. The series $\sum_{n=N+1}^{\infty} a_{n}$ is called a tail of the series $\sum_{n=1}^{\infty} a_{n}$.
(6) Express the infinite repeating decimal

$$
0.123451234512345123451234512345 \ldots
$$

as the sum of a convergent geometric series and compute its sum.
(7) Show that

$$
\frac{1}{r-1}=\frac{1}{r+1}+\frac{2}{r^{2}+1}+\frac{4}{r^{4}+1}+\frac{8}{r^{8}+1}+\cdots
$$

for all $r>1$.
(8) Obtain a formula for the following sums
(a) $2+\frac{2}{\sqrt{2}}+1+\frac{1}{\sqrt{2}}+\frac{1}{2}+\frac{1}{2 \sqrt{2}}+\cdots$.
(b) $\sum_{k=1}^{\infty} \frac{1}{k(k+2)(k+4)}$.
(c) $\sum_{k=1}^{\infty} \frac{\alpha r+\beta}{k(k+1)(k+2)}$.
(9) Let $\sum_{n=1}^{\infty=1} a_{n}$ be a convergent series and $\sum_{n=1}^{\infty} b_{n}$ is obtained by grouping finite number of terms of $\sum_{n=1}^{\infty} a_{n}$ such as $\left(a_{1}+a_{2}+\cdots+a_{m_{1}}\right)+\left(a_{m_{1}+1}+a_{m_{1}+2}+\cdots+a_{m_{2}}\right)+\cdots$ for some m_{1}, m_{2}, \ldots (Here $b_{1}=a_{1}+a_{2}+\cdots+a_{m_{1}}, b_{2}=a_{m_{1}+1}+a_{m_{1}+2}+\cdots+a_{m_{2}}$ and so on). Show that $\sum_{n=1}^{\infty} b_{n}$ converges and has the same limit as $\sum_{n=1}^{\infty} a_{n}$. What happens if $\sum_{n=1}^{\infty} a_{n}$ diverges?
(10) Let $a_{n} \geq 0$ for all n such that $\sum_{n=1}^{\infty} a_{n}$ converges. Suppose $\sum_{n=1}^{\infty} b_{n}$ is obtained by rearranging the terms of $\sum_{n=1}^{\infty} a_{n}$ (i.e., the terms of $\sum_{n=1}^{\infty} b_{n}$ are same as those of $\sum_{n=1}^{\infty} a_{n}$ but they occur in different order). Show that $\sum_{n=1}^{\infty} b_{n}$ converges and has the same limit as $\sum_{n=1}^{\infty} a_{n}$.
(11) Consider the series $\sum_{n=1}^{\infty} a_{n}$ where $a_{n}=\frac{(-1)^{n+1}}{n}$. Show that the series

$$
\left(1-\frac{1}{2}\right)-\frac{1}{4}+\left(\frac{1}{3}-\frac{1}{6}\right)-\frac{1}{8}+\left(\frac{1}{5}-\frac{1}{10}\right)-\frac{1}{12}+\cdots
$$

which is obtained from $\sum_{n=1}^{\infty} a_{n}$ by rearranging and grouping, is $\frac{1}{2} \sum_{n=1}^{\infty} a_{n}$.

